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Abstract

I develop a model of multinational production with heterogeneous FDI diversion
elasticities that capture flexible substitution patterns among production locations.
These elasticities are larger for locations that are more suitable for “China-alike” pro-
duction ideas in the context of the 2018–2019 China–U.S. trade war. The estimates
indicate that, over 2017–2023, a 1% increase in a destination economy’s market access
due to the Trump tariffs raises FDI from a given source by 14.9% on average, with
substantially larger responses for more “China-alike” destinations. Quantitatively, FDI
diversion amplifies China’s welfare loss by 38% while mitigating that of the U.S. by
34%. In a counterfactual that raises the suitability of the U.S. for “China-alike” pro-
duction, FDI diversion to the U.S. nearly doubles, while diversion to other economies
falls to near zero, further amplifying uneven welfare effects across countries.
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The China–U.S. trade war that began in 2018 has renewed interest in the effects of trade
policies on global trade patterns and welfare. Much of the recent literature has focused
on trade diversion, but the trade war also highlighted an equally important channel: the
reallocation of productive capital, particularly through foreign direct investment (FDI) and
multinational production.1

Yet the quantitative importance and patterns of FDI diversion remain imperfectly un-
derstood, even though they play an important role in shaping the welfare and policy im-
plications of major trade shocks worldwide. The possibility that manufacturers relocate
production back to the United States, or “reshoring,” has been a central motivation for U.S.
policy. At the same time, several studies document sizable firm relocation to alternative
destinations such as Vietnam and Mexico (e.g., Alfaro and Chor 2023; Freund et al. 2024),
consistent with the rhetoric of “friendshoring” and “nearshoring.” To what extent the U.S.
can achieve its goal, and how different third-party countries are affected in the wake of the
China–U.S. trade war, are among the many important questions related to FDI diversion.

In this paper, I develop a quantitative general equilibrium model of trade and multi-
national production featuring heterogeneous FDI diversion elasticities. I estimate the mag-
nitude and heterogeneity of FDI diversion elasticities with respect to trade policy changes
and link them to model primitives. I show that accounting for the existence and systematic
patterns of FDI diversion significantly alters the implications of the Trump tariffs.

On the theoretical side, I develop a general equilibrium model of trade and multinational
production (or FDI) with latent production technology types. Tariff shocks that trigger
trade diversion change market access and, in turn, the value of operating across production
locations. Consequently, producers adjust their optimal production locations, giving rise to
FDI diversion.

I decompose a country’s aggregate welfare change into different channels, underscoring
the importance of a “relocation” mechanism driven by FDI diversion. In trade-only models,
tariffs mechanically raise prices in the tariff-imposing economy. Once firms can relocate
production internationally, however, tariff shocks trigger production relocation that can offset
these price increases, implying that the welfare effects of the Trump tariffs can differ sharply
from those in standard trade-only analyses, such as Fajgelbaum et al. (2020).

I offer a tractable method for generating heterogeneous FDI diversion elasticities in a
general equilibrium model that can be taken to the data. To do so, I specify two types
of production technologies — “China-alike” and “location-specific” — in the context of the
2018–2019 China–U.S. trade war. For a given change in market access, the FDI diversion
elasticities are larger — not merely FDI diversion levels — for economies that are better

1I do not distinguish between the two and will refer to both simply as FDI throughout the paper.
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locations for “China-alike” production ideas. For example, Vietnam and other Southeast
Asian economies arguably have endowments and production environments similar to those
of China. This makes them natural alternatives for firms relocating out of China and leads to
larger FDI diversion elasticities. Similarly, investing economies that are more productive in
“China-alike” production ideas exhibit larger outward FDI diversion elasticities, on average
across destinations, in response to the Trump tariffs. The microfoundations for this interpre-
tation build on the recently developed approach to studying trade elasticity heterogeneity
(Lind and Ramondo 2023a) and adapt it to the FDI diversion setting.

Based on the FDI gravity equation derived from the model, I present evidence of signif-
icant FDI diversion during the 2018–2019 China–U.S. trade war. Instead of relying on micro
firm-level data for one or a few countries, often dictated by availability, the analysis uses
exclusively official, publicly available, country-level aggregate FDI data covering a broad set
of countries and years. The FDI gravity equation links bilateral FDI responses to changes
in the value of operating in a destination economy through market access, which in turn
determines observable changes in the destination’s total exports.

However, using a country’s export changes as the independent variable to quantify FDI
diversion is problematic because export changes are endogenous and affected by many other
shocks. To obtain exogenous variation in the value of operating and in total exports, I
construct a theory-consistent index of each economy’s exposure to trade diversion from the
Trump tariffs, based on U.S. tariff changes and pre-shock global trade data. Economies with
higher exposure are those with greater potential to substitute for China’s exports to the U.S.
and for which such export opportunities are economically important. For example, Vietnam’s
index places it at approximately the 95th percentile of the sample. This measure captures
the market-access component of changes in the value of operating across destinations in the
model. I use this index as an instrumental variable that shifts the destination economy’s
total exports and thereby affects the outcome of interest, FDI.

This IV strategy ensures that the estimated coefficients are interpretable: they measure
an average of deep parameters governing FDI diversion rather than merely documenting
its existence. The estimates imply that, on average, when a destination becomes 1% more
attractive as a production location, the investing economy increases its FDI there by 6.8%
over two years (2017–2019) and 14.9% over 6 years (2017–2023).

I next present evidence of systematic heterogeneity in FDI diversion elasticities. In the
model, the heterogeneity is determined by a bilateral variable: the share of production using
China-alike technologies among all FDI investments within a given economy pair. However,
this characteristic is inherently latent and therefore unobservable. I therefore construct
proxies motivated by the China-alike interpretation.
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I use two measures to proxy for how suitable a destination economy is for China-alike
technologies. The first is the correlation between the export shares of economy i and China
across NAICS 2007 three-digit industries (COR) in 2017. The second is the Grubel-Lloyd
index (GLI), a popular measure of supply chain linkages between economy i and China. The
first captures the idea that economy i has endowments and a production environment similar
to those of China, while the second captures how cost-efficient it is to move goods between
economy i and China. To proxy for the relative productivity of “China-alike” technologies
operated by investing economies, I again use the COR index. I then use the product of the
destination- and investing-economy measures as bilateral proxies (COR × COR and GLI
× COR). I interact these bilateral proxies with changes in total exports and estimate the
coefficient on the interaction term using the same IV strategy.

A major debate and central policy concern during the China–U.S. trade war has been the
role of connecting countries such as Vietnam, as well as whether the U.S. itself can attract
production relocation.2 My analysis provides a theoretical framework and a systematic
empirical examination of these discussions. According to my measures, Vietnam scores
highly on both proxies, helping to explain its prominent role in global relocation during the
China–U.S. trade war. On the other hand, the U.S. lies in the lower range of these proxies.

The empirical results indicate substantial heterogeneity in FDI diversion elasticities.
Moving from the economy pair with the smallest to that with the highest China-alike bilat-
eral proxies increases FDI diversion, in response to a 1% rise in the value of operating, by
more than 8.4% over two years and more than 21.1% over six years. The estimated coeffi-
cients suggest that this heterogeneity is large relative to the average bilateral FDI diversion
elasticity.

These findings do not align with the predictions of standard multinational production
models that assume homogeneous FDI diversion elasticities (e.g., Arkolakis et al. 2018).
Explicitly modeling heterogeneous FDI diversion differs fundamentally from a trade-only
framework, even when the latter allows for richer correlation structures across locations
(e.g., Lind and Ramondo 2023b; Fajgelbaum et al. 2024). Consider a model with homo-
geneous FDI diversion elasticities but heterogeneous trade elasticities: tariff shocks may

2For example, Flaaen and Pierce (2025) argue that, despite being intended to boost domestic manu-
facturing, U.S. industries more exposed to tariff hikes experienced relative declines in employment, as a
small positive effect from import protection is offset by larger negative effects from rising input costs and
retaliatory tariffs. Similarly, Iyoha et al. (2024) show that import tariffs on foreign goods neither raised
nor lowered U.S. employment in newly protected sectors. In terms of connecting countries, many studies
on Vietnam attempt to distinguish between tariff-jumping transshipment and genuine relocation, e.g., Iyoha
et al. (2024). Schulze and Xin (2025) argue that Vietnam benefited from genuine reallocation, with greater
domestic content in its exports to the U.S. in strategic sectors, rather than simply facilitating transshipment
of Chinese goods.
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generate heterogeneous substitutability of export opportunities across destinations, but con-
ditional on changes in export opportunities or in the value of operating, the elasticity of
FDI diversion is identical across locations. My method also highlights mechanisms based on
technological linkages across country pairs,3 distinct from alternative mechanisms that can
generate heterogeneous FDI diversion elasticities, such as the role of headquarter inputs in
Ramondo and Rodriguez-Clare (2013) and the role of market proximity and plant fixed costs
in Tintelnot (2017).

Finally, I use this framework and the estimated model parameters to assess the quan-
titative importance of FDI diversion in shaping the effects of the Trump tariffs. I calibrate
the model to a world economy consisting of fourteen economies and multiple sectors, taking
the year prior to the China–U.S. trade war as the initial equilibrium. I then subject this
calibrated economy to the Trump tariffs in a series of quantitative exercises.

I show that ignoring FDI diversion leads to substantial differences in predicted welfare
changes. This is illustrated by comparing the predictions from the baseline model with those
from a counterfactual exercise that holds FDI fixed across locations. The results indicate
that FDI diversion significantly amplifies China’s welfare losses from the tariffs by about
38% while mitigating those faced by the U.S. by about 34%.

I decompose countries’ aggregate welfare changes into different channels. The relocation
effect emerges as a significant driver of aggregate welfare changes, outweighing the traditional
terms-of-trade effect. The U.S. benefits primarily from the relocation effect, as more goods
are produced domestically, lowering the price index.

I emphasize the central role of heterogeneous FDI diversion elasticities in shaping relo-
cation patterns. These elasticities help explain why economies such as Vietnam have become
salient destinations for production relocated from China, while relocation to other economies,
such as the U.S., has been less responsive. According to my proxy measures, the U.S. lies at
the lower end of FDI diversion elasticities. I conduct counterfactuals that vary the suitability
of the U.S. for “China-alike” production. If the U.S. were a top location for “China-alike”
production, I show that both Chinese and global FDI diversion to the U.S. would almost
double, further alleviating welfare losses for the U.S. by about 30% and amplifying wel-
fare losses for China by about 22%. On the other hand, FDI diversion to other prominent
economies in the baseline, such as Vietnam, Malaysia, Japan, and Korea, would decrease
by more than half from China and become negligible when aggregated across all investing
economies.

3The specific meaning of technological linkages is flexible in my framework and can be adapted for
different contexts. For example, the COR-based proxy relates more to country endowments, while the
GLI-based proxy relates more to supply chain relationships between countries.
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Related Literature. My treatment of FDI diversion is closely related to the literature
on multinational production (e.g., Ramondo and Rodriguez-Clare 2013; Irarrazabal, Moxnes
and Opromolla 2013; Tintelnot 2017; Arkolakis et al. 2018), as surveyed by Antràs and Yeaple
(2014) and Bernard et al. (2018).4 Building on this literature, I apply the generalized extreme
value distribution method from Lind and Ramondo (2023a,b, 2024) to model patterns of FDI
diversion. This provides a tractable framework for generating heterogeneous FDI elasticities
that are directly disciplined by the data.5 My model’s mechanism and empirical sources of
heterogeneous elasticities differ from other mechanisms emphasized in the literature, such
as proximity to key markets (e.g., Tintelnot 2017; Utar, Cebreros and Torres 2025) and
geopolitical alignment (e.g., Aiyar, Malacrino and Presbitero 2024; Gopinath et al. 2025a,b).

This paper emphasizes the importance of large FDI movements during the China–U.S.
trade war,6 a development often highlighted in media reports and of considerable policy
concern (e.g., IMF 2023; Alfaro and Chor 2023). A growing body of work documents the
restructuring of global linkages in more descriptive terms (Flaaen, Hortaçsu and Tintelnot
2020) and examines systematic forces such as geopolitics (Gopinath et al. 2025a,b; Aiyar,
Malacrino and Presbitero 2024), supply chain networks (Freund et al. 2024; Garred and Yuan
2025), and other structural factors (Graziano et al. 2024). Vietnam and Mexico have fre-
quently been spotlighted as “winners” in both policy discussions and the academic literature
cited above.7

In contrast, my paper develops a model that explicitly links FDI to trade and production
fundamentals in a general equilibrium multiple-country setting. Using this framework and
relying solely on publicly available aggregate data, I conduct quantitative FDI diversion
analysis at the global level, whereas most existing studies focus on individual countries

4Recent work has employed both aggregate and micro-level data to document and model richer patterns
of multinational behavior — including production, location, sourcing, and export decisions (e.g., Gumpert
et al. 2020; Li, Nie and Wang 2020; Li 2026). Li, Li and Lu (2025) study optimal unilateral policies with
both multinational production (MP) and trade.

5Recent studies have developed related methods to study heterogeneous trade elasticities through flexible
demand systems (e.g., Adão, Costinot and Donaldson 2017; Fajgelbaum et al. 2024) and flexible technologies
(e.g., Farrokhi and Pellegrina 2023).

6Most papers on the China–U.S. trade war analyze trade-only models, e.g., Amiti, Redding and Weinstein
(2020); Fajgelbaum et al. (2020, 2024); Cavallo et al. (2021); Ma et al. (2024); He et al. (2025). Other work
incorporates additional margins of adjustment and channels, such as labor and firm reallocations within
countries (Caliendo and Parro, 2019), firm-to-firm supply relationships (Grossman, Helpman and Redding,
2023), and interactions with industrial policies (Ju et al., 2024). Trade diversion arises naturally from changes
in relative prices induced by tariffs and other trade policies (Fajgelbaum et al., 2024; Dang, Krishna and Zhao,
2023). More recent papers explore a range of further consequences of the trade war, including employment
and consumption (Waugh, 2019), electoral outcomes (Autor, Beck and Dorn, 2024), environmental impacts
(Du and Li, 2025), and technological interdependence (Chen, Fan and Luo, 2025).

7Some papers study whether increases in Vietnam’s exports and investment reflect genuine relocation or
phantom activity, e.g., Iyoha et al. (2024).
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(e.g., McCaig, Pavcnik and Wong 2022) given the difficulty of compiling micro-level data
across many economies. The general equilibrium framework also clarifies the central role
of relocation effects as a countervailing force on price levels in the tariff-imposing country,
relative to the tariff effects and their underlying mechanisms in trade-only models (e.g.,
(Venables, 1987; Ossa, 2011, 2014; Bagwell and Staiger, 2012)).

1 Model: Heterogeneous FDI Diversion Elasticities

I study a world economy consisting of N countries and S sectors. To simplify notation, I
suppress the sector superscript when it is not essential. The model is static. Each country j

is endowed with an exogenous, inelastically supplied stock of efficiency units of labor Lj and
an aggregate firm productivity level zj. For each country–sector pair, there is a fixed unit
mass of producers indexed by ω. Each producer has a technology to produce a differentiated
variety. Every producer ω is constrained to operate in one production country i and sells
its variety to all potential importing countries h.8 I will generally index the source country
(where producers originate) by j, the production country by i, and the importing country
by h.

Two simplifying assumptions are not innocuous. The first is that producers are re-
stricted to a single production location. In Appendix A.4, I show that the model’s results
are essentially unchanged under the opposite extreme assumption — that producers can
operate in all locations without incurring fixed costs of establishing production sites, as in
Arkolakis et al. (2018). Empirically, because the analysis relies only on aggregate data and
focuses on aggregate outcomes, these two assumptions are effectively equivalent for aggregate
implications. The intermediate case, as in Tintelnot (2017), is more complex. I discuss how
it relates to the mechanisms in this model and argue that the “proximity to key markets”
channel emphasized by Tintelnot (2017) is not a substitute for the channels considered here.

The second assumption is that there is no heterogeneity in trade elasticities, unlike in the
case of FDI. A growing literature, including Adão, Costinot and Donaldson (2017); Lind and
Ramondo (2023b); Fajgelbaum et al. (2024), has highlighted the importance of heterogeneous
bilateral trade elasticities in the China–U.S. trade war and in other contexts. While it is
possible to incorporate such methods to introduce heterogeneous trade elasticities, I abstract
from them to maintain focus on heterogeneity in FDI elasticities, which is conceptually
distinct. If a country is more substitutable for Chinese exports, as in Fajgelbaum et al.
(2024), this would manifest as a larger increase in its value of operating. By contrast,

8For example, one can assume that there is a sufficiently large span-of-control cost such that no producers
operate in multiple locations.

7



heterogeneity in FDI diversion elasticities is defined conditional on changes in the value of
operating, not on the shock itself. Moreover, because the empirical analysis is conducted
using measures of the value of operating, it arguably already captures the consequences of
potential heterogeneity in trade diversion elasticities, should they exist.

1.1 Household Demand

For each importing country h and sector s, there is a competitive producer of the sectoral
composite good Qs

h who supplies it by purchasing and combining all tradable varieties. Let
M s

ij denote the set of varieties in sector s owned by producers from country j and produced
in country i. These tradable varieties face two types of frictions between the production (or
exporting) country i and the importing country h: (i) iceberg trade costs τ s

hi, and (ii) a gross
ad valorem tariff ts

hi.9 Specifically,

Qs
h =

 N∑
j=1

N∑
i=1

∫
Ms

ij

qs
hij(ω)

ϵs−1
ϵs dω

 ϵs

ϵs−1

,

where qs
hij(ω) denotes the quantity of variety ω in sector s imported by h, produced in i,

and owned by a producer from j, and ϵs is the sector-specific elasticity of substitution across
varieties. The corresponding price of variety ω is ps

hij(ω).
The sectoral composites are purchased at their associated price indices P s

h and aggre-
gated into a final good for household consumption: Qh = ∏S

s=1 (Qs
h)ϕs

h , where ∑s ϕs
h = 1 and

ϕs
h denotes the exogenous expenditure share on each sectoral composite. The corresponding

final-good price index is Ph.
The representative household consumes the final good, and its expenditure Xh = PhCh

equals total income. Income consists of labor income, whLh, and other sources taken as
given: (i) aggregate domestic producers’ profits Dh, since all firms are ultimately owned by
the household; (ii) government tariff revenue Th; and (iii) an exogenous country-level transfer
Γh. The transfer can be interpreted as reserves or other mechanisms that affect the country’s
balance of payments but are not modeled endogenously.

9I abstract from fixed costs of exporting, since firm heterogeneity does not play a key role in the model
and the empirical analysis does not focus on heterogeneity across firms within a given country–sector.
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1.2 Production Technology

There are K technology classes, each corresponding to a “system” for producing goods.10

For each technology class k, producers receives a productivity draw for every potential pro-
duction location i. The efficiencies of class k for firms from country j producing variety ω

across all locations i are distributed as:

Pr
[
ak

1j(ω) ≤ ak
1, . . . , ak

Nj(ω) ≤ ak
N

]
= exp

−zj

(
N∑

i=1

(
ηk

ij

(
ak

ij

)−θ
) 1

1−ρk

)1−ρk
 ,

where θ captures the dispersion of productivity across varieties, 0 ≤ ρk ≤ 1 measures the
correlation of productivity for the same variety across production locations, and ηk

ij measures
the productivity level of firms from j operating technology class k in country i.

Productivity in each location is then determined by the best available technology class:

aij (ω) = max
k

ak
ij (ω) .

In the context of the Trump tariffs and FDI diversion, with a focus on understanding
firms relocating from China to other locations, I set K = 2 and interpret the first technology
class as “location-specific” (LS) technology with no correlation, and the second as “China-
alike” (CA) technology with positive correlation across production locations, captured by a
parameter 0 ≤ ρ ≤ 1. The idea is that CA technologies correspond to production ideas most
suitable for the Chinese production environment, but firms from all countries can generate
ideas in this class with varying levels of efficiency and apply them to production in other
locations. Since applications in different locations are based on the same CA idea, their
productivities are correlated. On the other hand, the LS technologies are only suitable for
each specific location, and therefore exhibit no correlation across production locations. A
more detailed microfoundation, adapted from Lind and Ramondo (2023a,b, 2024), for the
following reduced-form productivity draw distribution is laid out in Appendix A.3.1.

Specifically, the joint productivity a firm effectively faces across production locations
follows a max-stable Fréchet distribution:

Fj({ai}) = exp
(
−zjG

(
a−θ

1 , . . . , a−θ
N

))
(1)

10For example, technology classes could represent production networks tied to location-specific supply
chains or other country-centered global supply chains. They could capture production procedures that
are more centralized and disciplined versus those that are more decentralized and creativity-enhancing.
Alternatively, they could reflect production methods that rely heavily on numerous inputs and thus require
good infrastructure, as opposed to methods that are more self-sufficient. Different interpretations may be
more suitable in different contexts.
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where G(·) is a cross-nested CES (CNCES) correlation function:

G
(
a−θ

1 , a−θ
2 , . . . , a−θ

N

)
=

N∑
i=1

a−θ
i +

(
N∑

i=1

(
ηija

−θ
i

) 1
1−ρ

)1−ρ

,

where the scale parameters for the location-specific technology are normalized to 1 for all
locations, while those for the China-alike technology are denoted by ηij > 0, for i, j =
1, . . . , N . The correlation function G(·) provides a flexible structure for the dependence of
productivity draws across production locations i for producers from source country j. This
flexibility is crucial for generating heterogeneous FDI diversion elasticities across country
pairs, as highlighted later.

A higher ηij implies that firms from j are relatively better at using CA than LS tech-
nologies or that location i is relatively better suited for applying CA than LS technologies.
When firms make relocation decisions out of China in response to the Trump tariffs in this
context, all else equal, they are more likely to move to locations that are better at applying
CA ideas, and firms from countries that are more proficient in CA technologies relocate with
larger elasticities. Although ηij across country pairs is an inherently latent fundamental and
thus unobservable, I use measurable proxies in the empirical analysis to capture the idea
that some country pairs are better at applying CA production technologies.

Other mechanisms that could explain why relocation elasticities toward some countries
were greater than toward others during the China–U.S. trade war are certainly relevant
but are not the focus here. One such mechanism is closely related to the microfoundation
above but digs deeper into why certain locations are better at applying China-related ideas.
In Appendix A.3.2, I adapt the model setup to include intermediate goods and supplier
sourcing decisions. I assume that productivity is a combination of idea quality and matching-
specific price-adjusted quality of the intermediate input. Locations that are cheaper for
sourcing from China can thus better apply China-related ideas. One useful feature of this
microfoundation is that it can be mapped into the same reduced-form productivity draw
distribution (1). Empirically, Freund et al. (2024) show that countries replacing China tend
to experience faster import growth from China, while Garred and Yuan (2025) document
that Chinese investment and intermediate inputs increasingly flow to third-country “winners”
who simultaneously expand their U.S. market share.11 A second mechanism is proximity to
key markets, with Mexico as the prime example. Tintelnot (2017) provides a framework
in which, with many potential but costly-to-set-up production locations, tariff shocks make
Mexico particularly attractive, leading to high FDI diversion elasticities toward it. Utar,

11Exploring this mechanism requires more detailed information on multinational firms’ sourcing decisions,
which is beyond the scope of this paper.
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Cebreros and Torres (2025) provide firm-level evidence of nearshoring to Mexico triggered
by the China–U.S. trade war. Finally, another mechanism that has received substantial
attention is geopolitical alignment; see, for example, Aiyar, Malacrino and Presbitero (2024);
Gopinath et al. (2025a,b).

1.3 Producers’ Pricing and Location Decisions

Conditional on productivity in a given location i, the producer uses a constant-returns-
to-scale technology with a single factor of production, labor, to produce output:

qij(a) = a
1

ϵ−1

κij

lij(a),

where qij(a) is the quantity of output, lij(a) is the amount of labor hired in country i, and κij

is the bilateral foreign operation friction (or MP cost), normalized to one when the producer
operates in its home country (i.e., i = j).

I solve the producer’s problem in two steps. First, I solve for the producer’s optimal
pricing and production decisions, given the choice of production location. This yields the
value of operating in each location. Second, producers choose their production location by
comparing these values across locations and taking into account random productivity draws.

Conditional on operating in location i, and given the production technology and CES
demand, each producer chooses the price at which it sells its variety to importing country
h and the quantity of labor to hire, subject to the constraint that total output equals total
sales adjusted for trade costs: ∑N

h=1 τhiqhij(a) = qij(a). The optimal price phij(a) is set
as a markup over marginal cost. The markup equals ϵ

ϵ−1 and depends on the elasticity of
substitution. Marginal cost depends on trade costs, tariffs, bilateral operation frictions, the
wage rate in the production location, and the producer’s productivity. The optimal price is
phij(a) = ϵ

ϵ−1
thiτhiwi

a
1

ϵ−1 /κij

. The profit from selling to all destinations h is dij(a) = avij, where

vij ≡ 1
ϵ − 1

Ai (wiκij)1−ϵ

is referred to as the value of operating in i for producers from j (profit earned by a producer
from j operating in i with normalized productivity a = 1), and Ai = ∑

h (τhi)−ϵ (thi)1−ϵ
(

ϵ
ϵ−1

)−ϵ

P ϵ
hQh is the market access of country i as a production location for a given sector.

In Appendix A.1, I derive that the probability that location i is the best choice for a

11



producer from j — and hence the mass of j firms choosing i — is given by:

P
(

vijaij = max
i′

vi′jai′j

)
=

vθ
ijGi(vθ

1j, . . . , vθ
Nj)

G(vθ
1j, . . . , vθ

Nj)
≡ Mij,

where Gi ≡ ∂G(x1,...,xN )
∂xi

. The numerator measures how attractive location i is as a pro-
duction location. The denominator is the sum of this measure across all locations, i.e.,
G(vθ

1j, . . . , vθ
Nj) = ∑

i vθ
ijGi(vθ

1j, . . . , vθ
Nj).12

1.4 Aggregation and Equilibrium

For each sector s, the price index is

P s
h =

 N∑
j=1

N∑
i=1

M̃ s
ij z̃j

(
P s

hij

)1−ϵs

 1
1−ϵs

,

where M̃ s
ij ≡

(
M s

ij

) θ−1
θ Gi

(
vs

1j, . . . , vs
Nj

) 1
θ captures the productivity-adjusted mass of produc-

ers from j producing in i; z̃s
j ≡ Γ(1 − 1/θ)

(
zs

j

)1/θ
is the average productivity of producers

from j; and P s
hij ≡ ϵs

ϵs−1ts
hiτ

s
hiκ

s
ijwi captures the markup and marginal cost faced by these

producers. Similarly, the aggregate profit earned by producers from j producing in i is given
by Ds

ij = M̃ s
ijv

s
ij z̃

s
j . Denote Dj ≡ ∑

i

∑
s Ds

ij and Dout
j ≡ ∑

i

∑
s Ds

ji to be country j’s total
inward and outward profits, respectively.

The import share of goods shipped from i to importing country h in sector s, denoted
by πs

hi, is

πs
hi =

∑
j M̃ s

ij z̃
s
j

(
P s

hij

)1−ϵs

(P s
h)1−ϵs . (2)

The goods market clearing condition is

Yi =
∑

h

∑
s

πs
hi

ts
hi

Xs
h,

where Yi ≡ wiLi + Dout
i denotes total output in country i, and Xs

h ≡ P s
hQs

h denotes total
expenditure in country h on sector s.

12For example, when the correlation function is additive and thus productivity draws are indepen-
dent across locations, as in Eaton and Kortum (2002), the location choice probability simplifies to
P (vijaij = maxi′ vi′jai′j) = vθ

ij∑
i′ vθ

i′j

. Here, the choice probability depends solely on the relative value of

vij and the parameter θ, which governs the dispersion of productivity across varieties.
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Net exports for country j are defined as Net Exportsj ≡ Yj − Xj, and net income is
defined as Net Incomej ≡ Dj − Dout

j . Each country’s budget constraint must hold:

Net Exportj + Net Incomej + Tj − Γj = 0,

where tariff revenue is Tj = ∑
s

∑
i

tji−1
tji

πs
jiX

s
j .

An equilibrium is a set of prices (goods prices and wages) and allocations (consump-
tion and producer distributions), given fundamentals (productivities, labor endowments,
trade costs, tariffs, foreign operation frictions, and distributions of idiosyncratic productivity
draws), such that households and producers optimize, producer distributions are consistent
with these decisions, goods markets clear, and country budget constraints are satisfied.

1.5 Welfare Decomposition: New Mechanism from FDI Diversion

Using the country budget constraint and the aggregate price index, welfare changes in
response to trade shocks can be decomposed as follows:

d ln Cj ≈ TOTj + Profitj + Relocationj + V olumnj + Transferj, (3)

where the detailed equation is given in Appendix A.2.
The first term TOTj on the right-hand side is the terms-of-trade effect from tariff

changes, capturing differential changes in the world prices of country j’s production and con-
sumption bundles.13 The second term Profitj represents the profit-shifting effect, capturing
changes in country j’s real income arising from changes in aggregate industry profits.14 15

The third term Relocationj represents the production relocation effect, and is the new

13Following the existing literature, I define the terms of trade as the ratio of the ex-factory price of a
foreign variety to that of a domestic variety. Since labor is the only production factor and producers charge
a constant markup, wage changes are proportional to changes in ex-factory prices. Relative to a model
without FDI, world price changes in country j’s production bundle include not only domestically produced
goods but also goods produced abroad, weighted by j’s income shares from domestic production and foreign
production in country i. The consumption bundle price change is a weighted average of wage changes across
all countries, with weights given by factual import value shares.

14The profit-deviation term incorporates changes in the mass of producers, whereas the wage-deviation
term, which reflects production costs, does not. Thus, this term reflects the profit-shifting effect averaged
over the new mass of producers.

15The first two terms arise even in the absence of multinational production or FDI diversion. As discussed
in Ossa (2014), in models with only domestic production, tariffs affect output at the intensive margin without
free entry and at the extensive margin with free entry. The former generates a profit-shifting effect, while the
latter generates a dislocation effect. My model assumes a fixed mass of producers, yet a distinct relocation
effect emerges because firms can shift across production locations.
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mechanism directly coming from FDI diversion. It equals

Relocationj ≡
∑

i

∑
s

1
ϵs − 1

ts
jiT s

ji

Xj

∑
j′

ωs
ij′ d ln M̃ s

ij′ ,

where T s
ji ≡

(
πs

ji/ts
ji

)
Xs

j denotes the factual trade value exported from i to j in sector s,
and ωs

ij′ ≡ Ds
ij′/

(∑
j Ds

ij

)
is the share of FDI stocks in i and sector s by producers from j′.

Household j consumes varieties exported from all countries i, while production in each
country i can originate from multiple source countries j′. When tariff changes induce pro-
ducers to relocate to locations that serve consumers in j at lower cost, the aggregate price
index faced by consumers in j falls, improving their welfare.

As I will show later in the quantitative analysis, the relocation effect outweighs the
traditional terms-of-trade effect emphasized in the existing literature and the profit-shifting
effect. In trade-only models, tariffs lead to higher prices in the imposing economy because of
direct tariff and wage (terms-of-trade) effects. The relocation effect, reflects changes in price
indices due to shifts in producer locations, excluding direct tariff and wage effects (absorbed
in the TOTj and V olumnj terms), and thus points to a countervailing force affecting price
levels in the economy that imposes tariffs on others. Since this effect exists only when there
is FDI diversion, this decomposition highlights that the price implications of the Trump
tariffs can be very different from those in trade-only models with FDI diversion, such as
Fajgelbaum et al. (2020).

The fourth term represents the trade-volume effect, arising from changes in import
volumes, and the final term captures changes in the value of the exogenous transfer.

1.6 Heterogeneous FDI Diversion Elasticities

I now derive the model’s FDI gravity equation and the implied FDI diversion elasticities.
Since all producers charge the same markup, the ratio Dij/Di′j also measures relative FDI
by producers from j between countries i and i′ in this static model. Define the probability of
choosing location i under the China-alike technology as Zij ≡

(
ηijv

θ
ij

) 1
1−ρ /

(∑
i′

(
ηi′jv

θ
i′j

) 1
1−ρ

)
,

and the share of FDI in location i operating under the China-alike technology as Cij ≡ ηijZρ
ij

1+ηijZρ
ij

(shown in Appendix A.1). Plugging in the correlation function, this elasticity is

∂ ln Dij

Di′j

∂ ln vij

= θ + ρ

1 − ρ
θ (Cij (1 − Zij) + Ci′jZij) .
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Note that Zij is small for most locations other than the domestic country j, and that for each
i I can always choose i′ as the location with the smallest proxy measure of ηi′j; I therefore
make the following approximations:

1 − Zij ≈ 1, Ci′j ≈ 0.

With these approximations, the FDI diversion response equation can be rewritten as

∂ ln Dij

Di′j

∂ ln vij

≈ θ + ρ

1 − ρ
θ Cij. (4)

Equation (4) provides the basis for empirical tests of FDI diversion during the China–
U.S. trade war, capturing systematic diversion patterns in a theory-consistent manner. When
ρ = 0, so that the productivity distribution effectively collapses to a single technology class,
all FDI diversion elasticities are homogeneous and determined solely by the Fréchet shape
parameter θ. When the productivity distribution consists only of the correlated technology
class, elasticities are again homogeneous and are determined by θ/(1 − ρ). This corresponds
to the case considered in multinational production models such as Ramondo and Rodriguez-
Clare (2013); Arkolakis et al. (2018).

With two technology classes, as in this paper, FDI diversion elasticities are heteroge-
neous. Equation (4) clarifies under what conditions the elasticity of FDI diversion toward
destination i is higher for firms from a given investing country j. First, when the value of
operating in location i increases, producers from j raise the probability of choosing i (relative
to i′) more strongly when the dispersion parameter θ and the correlation parameter ρ are
larger. Second, when production by firms from j in location i relies more heavily on China-
alike technologies — that is, when Cij is higher — the FDI diversion elasticity is higher.
This can occur both because firms from j are relatively good at China-alike technologies and
because location i is particularly well suited to applying China-alike technologies.

2 The Evidence and Patterns of FDI Diversion

This section presents two empirical exercises on global FDI movements. The first pro-
vides evidence that trade policy shocks — in this case, the Trump tariffs — generate sys-
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tematic FDI responses, a phenomenon I refer to as FDI diversion.16 17 The Trump tariffs
affected many countries simultaneously, allowing for comparable quantitative measurement.
These shocks serve as instruments for the model’s value of operating, which drives FDI lo-
cation choices. The second exercise examines why, during the China–U.S. trade war, certain
economies — such as Vietnam — emerged as especially attractive and responsive destina-
tions for production relocation, while others — such as the U.S. — were less successful in
attracting FDI diversion. I focus on systematic heterogeneity in FDI diversion elasticities in
the context of the Trump tariffs.18

While neither idea is entirely novel, this paper provides a theory of heterogeneous FDI
diversion elasticities and connects these elasticities to model primitives. The empirical results
reveal systematic deviations from the predictions of standard FDI gravity models and high-
light the importance of moving beyond these benchmarks to account for observed FDI move-
ment patterns and to understand the welfare implications of the Trump tariffs. Moreover,
I rely exclusively on aggregate data, which are more systematically collected and broadly
available.

2.1 FDI Data

I use FDI data collected and published by national governments and international agen-
cies. I start with the OECD International Direct Investment Database, which reports both
country-level FDI aggregates and FDI by partner country or by industry.

The OECD database is limited in terms of country coverage. To expand coverage, I
also use the Coordinated Direct Investment Survey (CDIS) compiled by the International
Monetary Fund (IMF), which provides bilateral FDI positions for a larger set of countries
than the OECD database.

16FDI diversion in response to trade and other external shocks is not new. For example, European
integration led to significant capital formation and reallocation across member economies — such as Spain,
Portugal, and Estonia — following their accession to EU membership (see Baldwin and Wyplosz 2022).
Similarly, concerns have long been raised that China’s integration into the world economy diverted investment
away from other developing economies.

17Most prior research uses shocks such as bilateral trade or investment agreements to study FDI responses.
For example, McCaig, Pavcnik and Wong (2022) show that the U.S.-Vietnam Bilateral Trade Agreement,
which reduced U.S. tariffs on Vietnamese exports, led to a significant increase in foreign firms entering
Vietnam. However, because that study focuses on a single FDI-recipient country, it is difficult to compare
the magnitude of FDI responses to other shocks, such as additional tariff reductions. Even in multi-country
contexts, comparing the size of shocks across investment agreements is challenging.

18Since 2018, policy reports, media coverage, and academic work have increasingly debated where firms
are relocating and why. Existing studies often examine macro-level patterns (e.g., Alfaro and Chor 2023;
Gopinath et al. 2025a) or rely on micro-level data with stronger identification but limited geographic scope.
For instance, Graziano et al. (2024) focus on Chinese multinationals, while Garred and Yuan (2025) study
Chinese listed firms.
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For some economies required for the quantitative exercises but not fully covered in these
databases, I manually collected data from national statistical offices.

In sum, this combined dataset from multiple official sources provides bilateral FDI
positions for major investing and recipient countries over the period 2013–2023. Appendix
B.1 provides a more detailed explanation of the FDI data sources and cleaning procedures.

2.2 The Trump Tariffs Trade Diversion Index

In 2018 and 2019, the United States increased tariffs on Chinese goods covering about
$350 billion in trade flows. Following studies of trade diversion (e.g., Fajgelbaum et al. 2024),
I treat product-level variation in U.S. tariff increases on Chinese exports as uncorrelated with
other countries’ specialization patterns and construct an index that serves as an instrument
for firms’ perceived value of operating in each location. Because bilateral FDI data are not
available at the product level (or even at the sector level), I construct the index at the
country level by combining variation in the Trump tariffs across goods with countries’ trade
shares.

The index is designed to capture the relative potential of each country to substitute for
Chinese exports in meeting U.S. demand.19 I take HS 6-digit-level tariff increases imposed
by the U.S. on China from Fajgelbaum et al. (2020).20

To construct the weights, I use BACI trade flow data for 2017.21 For each product ν,
I calculate country i’s export revenue share, ri(ν); country i’s export revenue share to the
U.S., rUS,i(ν); and the U.S. import share from China, πUS,CN(ν).22 Denoting the U.S. tariff

19The index follows a shift-share design, where tariff variation across products provides the shift and
trade shares provide the share. To identify the effect of this index on inward FDI stocks, the shifters must
be mean-independent of the shares, the potential outcomes (inward FDI stock growth absent the tariffs),
and the treatment effects per unit of the shifter on each country (see Proposition 1 in Adão, Kolesár and
Morales 2019).

20The tariff changes are rescaled in proportion to their duration within a 24-month interval; see Fajgel-
baum et al. (2020) for details. The Trump tariffs consist of a sequence of tariff increases over 2018 and 2019,
which I treat as a single event occurring in 2018. I use the simple average of the scaled 2018 and 2019 tariffs
for each variety. Using alternative measures, such as the maximum tariff increase, does not qualitatively
affect the results.

21BACI provides bilateral trade flows for about 200 countries at the product level (roughly 5,000 products,
defined at the HS 6-digit level). See http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele_item.asp?
id=37.

22Let EXhit(ν) be the export value from country i to h for a product ν in year t, then the three weights
are calculated as

ri(ν) =
∑

h EXh,i(ν)∑
ν

∑
h EXh,i(ν)

, rUS,i(ν) = EXUS,i(ν)∑
h EXh,i(ν)

, πUS,CN(ν) = EXUS,CN(ν)∑
i EXUS,i(ν)

.
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increase by ∆tUS,CN(ν), the trade diversion index for country i is

DIi =
∑

ν

ri(ν) rUS,i(ν) πUS,CN(ν) ∆tUS,CN(ν). (5)

As shown in Appendix A.5, this construction corresponds precisely to the model’s relevant
variation in d ln Ai, the change in country i’s market access. Intuitively, countries specializing
in goods subject to larger U.S. tariff increases on Chinese exports are more likely to experience
increases in diverted export demand. This effect is stronger when the U.S. is a relatively
important market for both the good and the exporting country, and when China was a
prominent supplier of the good to the U.S.

2.3 Proxies for China-alike Suitability

I use two measurable proxies for the share of FDI in location i that operates under the
China-alike technology, Cij, which is a latent and unobservable bilateral characteristic.

First, I calculate the correlation between country i’s and China’s export shares across
industries at the NAICS 2007 three-digit level in 2017, the year before the tariffs, denoted by
CORi. The idea is that a country’s export portfolio across industries reflects its production
portfolio, which in turn captures fundamental abilities or endowments relevant for those
industries.

Second, I calculate the Grubel-Lloyd index (GLI) between country i and China, denoted
by GLIi. It is defined as 1− |EX−IM |

EX+IM
at the HS four-digit level and averaged across products

with (EX+IM) as weights, where EX and IM denote bilateral exports and imports between
country i and China in 2017. The Grubel-Lloyd Index is a common measure of supply chain
linkages.23 A country with strong supply chain connections to China is likely to be well
suited to producing goods using China-alike ideas.

I normalize both CORi and GLIi so that their minimum equals zero and their maximum
equals one. Table 1 reports these two variables for a set of selected economies used in later
quantitative analysis, along with summary statistics across all available economies. Notably,
Vietnam — a prime example of a “connector” or “winner” economy — has very high values
of both proxies, while the U.S. has relatively low values.

Using these measures, I construct two variables to proxy for Cij:

CCOR
ij = CORi CORj, CGLI

ij = GLIi CORj. (6)

A higher CORj captures the idea that the investing economy is more likely to use China-alike

23See Freund et al. (2024) for a discussion of its advantages over other measures.
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Table 1: China-alike Measures for Selected Economies

Economy COR GLI

Argentina 0.091 0.028
Australia 0.076 0.082
Brazil 0.074 0.082
Canada 0.229 0.206
Chile 0.058 0.022
Germany 0.571 0.592
France 0.456 0.325
UK 0.502 0.262
India 0.295 0.195
Japan 0.655 0.716
Korea 0.901 0.652
Mexico 0.729 0.215
Malaysia 0.953 0.613
Taiwan, China 1.000 0.668
The U.S. 0.702 0.307
Vietnam 0.970 0.692

Mean 0.263 0.119
Median 0.169 0.050
SD 0.241 0.174
Obs 225 210

Notes: Summary statistics for all countries in the
sample are reported in the last three rows. The sam-
ple contains 225 economies for COR and 210 for GLI.

technologies for a given destination economy. To capture destination economy characteristics,
both CORi and GLIi capture how suitable a location is for China-alike technologies relative
to others, the location-specific technologies in the model. Figure A1 in Appendix B.2 plots
the histograms of the two proxies. Although I argue that these two proxies are positively
correlated with Cij, there is no exact quantitative mapping between them. Thus, regression
coefficients based on these proxies should not be interpreted as the structural parameters
θ and ρ, which are disciplined more formally in the calibration section. Nevertheless, the
regression coefficients are still economically interpretable.

2.4 Regression Specifications

I now specify the regression equations. For the dependent variable, I use bilateral FDI
data to measure over-time changes in the model variable ln Dij

Di′j
, where i′ is chosen to be

the location with the smallest proxy measure of CAi′j for each j. Let FDKijt denote the
inward FDI stock in country i held by firms from j at time t.24 For s = 2019, . . . , 2023,

24I use FDI stocks (FDK) rather than flows because stocks are the primary statistics reported by countries,
and flows are often negative, which generates many missing values.
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define ∆sFij = FDKijs

FDKi′js
/ FDKij,2017

FDKi′j,2017
− 1. The year 2017 serves as the pre-shock period, and the

analysis covers outcomes from 2019 — since the tariffs were imposed during 2018–2019 —
through the latest available year, 2023.

For the independent variable, I use total export growth from 2017 to 2019 for country
i, denoted by ∆EXi to measure over-time changes in the model variable ln vij. I focus on
the change from 2017 to 2019 because trade adjusts relatively quickly, so changes observed
by 2019 are likely to reflect the impact of the Trump tariffs on the value of operating for
a production location while being less influenced by other shocks such as COVID-19. Note
that vij is the value of operating for firms from j in location i, which is a bilateral variable.
However, I implicitly assume that the changes of this bilateral variable induced by the Trump
tariffs is the same across firms from all investing countries j — because it only affects Ai but
not bilateral primitives such as κij — and thus that changes in total export by production
country i apply to all bilateral relationships.25

With these measures, I run the following two regressions using instrumental variables,
for s = 2019, . . . , 2023 and for both proxies P ∈ {COR, GLI}:

∆sFij = β̄ ∆EXi + αj + ūij, (7)

∆sFij = β ∆EXi + γ ∆EXi × CP
ij + αj + uij. (8)

The obvious identification problem is that ∆EXi is endogenous, and this is precisely where
variation in the Trump tariffs and my trade diversion index play an important role. The
trade diversion index isolates exogenous variation stemming from the tariffs that drives
∆EXi; accordingly, I use DIi to instrument ∆EXi and DIi ×CP

ij to instrument ∆EXi ×CP
ij .26

The objective here is not to estimate the structural parameters θ and ρ,27 but rather to
test for the existence and gauge the magnitude of systematic heterogeneity of FDI diversion
elasticities. More specifically, regression (7) provides the simplest evidence for the existence
of FDI diversion due to the Trump tariffs at the bilateral country level. The coefficient β̄

captures the baseline average causal effect of the value of operating in a destination country
on relative FDI stock growth for a given investing country. Regression (8) corresponds

25The ideal independent variable would be total profits earned by firms from j in i, which are not available
for a large number of country pairs. However, the following model features and empirical observations
alleviate this imperfect-measure problem: (1) sales and profits are proportional under the CES assumption,
(2) the operation frictions κij are assumed to be fixed over time, (3) many relocating firms in the context of
the Trump tariffs are export-oriented rather than primarily serving the destination market.

26The identification assumption for the IV regression (8) are as follows: (1) Relevance (first stage): DIi

(and its interactions) shift ∆EXi and ∆EXiC
P
ij conditional on investing-country fixed effects; (2) Exclusion

(orthogonality): E
[
uij | DIi, DIi × CP

ij , j
]

= 0.
27In the quantitative analysis, I further rescale CP

ij to estimate θ and ρ.
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directly to the model’s FDI diversion equation (4) and tests for heterogeneity in FDI diversion
elasticities. Conditional on the measures CP

ij , I impose a linear relationship between the
proxies and the dependent variable; accordingly, γ can be interpreted as the increase in the
causal effect when moving from the country pair with the lowest to that with the highest
China-alike technology production share in the sample.

2.5 Regression Results

I first present empirical evidence of FDI diversion in response to the Trump tariffs.

Table 2: IV Estimates of β̄ by Year

2019 2020 2021 2022 2023

∆EXi 6.817∗∗∗ 4.002∗ 7.624∗∗ 9.984∗∗ 14.888∗∗∗

(2.311) (2.048) (3.070) (3.859) (5.207)

Kleibergen–Paap F 11.12

# Obs. 3435

Notes: All regressions include investing economy fixed effects. The sam-
ple is restricted to economies with the largest inward FDI stocks in 2017,
excluding those typically classified as tax havens. The regressions cover
74 investing economies and 138 destination economies. Standard errors
are clustered at the investing economy level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

Table 2 reports the estimates of β̄. The coefficients are consistently positive and statis-
tically significant from 2019 through 2023. They also increase over time — except in 2020,
when COVID-19 likely disrupted FDI patterns — suggesting gradual and continuing FDI
diversion. Quantitatively, the estimates imply that, on average, when a destination economy
becomes 1% more attractive as a production location, firms from the investing economy in-
crease FDI there — relative to the least responsive destination — by 6.8% within two years
and by 14.9% within six years.28

For robustness, I run the same regressions for the pre-shock years, i.e., for ∆sFij with
s = 2013, . . . , 2016. Table A1 in Appendix B.3.1 shows that none of the coefficients for the
year 2013 to 2016 are statistically significant.

28My estimates of the average effects are in the same range as a related estimate in the literature by
Arkolakis et al. (2018). Their estimates of the coefficient β̂r in their equation (30), which has the structural
interpretation θ/(1 − ρ) (their homogeneous multinational production trade elasticity), range between 8.4 to
11.6 across specifications.
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Systematic Heterogeneous FDI Diversion Elasticities Next, I present evidence that
locations better suited to China-alike technologies exhibit stronger inward FDI diversion
responses to the same shock.

Table 3: IV Estimates of β, γ by Year

Panel A. Proxy CCOR
ij

2019 2020 2021 2022 2023

∆EXi 1.133∗ 0.207 0.260 0.519 0.791

(0.630) (0.756) (0.858) (0.960) (1.231)

∆EXi × CCOR
ij 8.406∗∗∗ 5.418∗∗ 10.785∗∗∗ 13.966∗∗∗ 21.131∗∗∗

(2.096) (2.405) (2.711) (3.237) (3.483)

Kleibergen–Paap F 20.82

# Obs. 3369

Panel B. Proxy CGLI
ij

2019 2020 2021 2022 2023

∆EXi 1.742∗∗∗ 0.349 1.116 2.021∗ 3.009∗∗

(0.654) (0.648) (0.877) (1.037) (1.339)

∆EXi × CGLI
ij 13.949∗∗∗ 9.701∗∗∗ 17.684∗∗∗ 21.782∗∗∗ 33.114∗∗∗

(3.210) (3.311) (4.592) (5.795) (6.832)

Kleibergen–Paap F 30.87

# Obs. 3369

Notes: All regressions include investing economy fixed effects. The sample is
restricted to economies with the largest inward FDI stocks in 2017, excluding those
typically classified as tax havens. The regressions cover 74 investing economies
and 138 destination economies. Standard errors are clustered at the investing
economy level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 3 shows that the coefficients on ∆EXi × CP
ij are consistently positive and statisti-

cally significant from 2019–2023, across both proxies capturing different sources of systematic
heterogeneity. Similar to the estimates of β̄, these coefficients also increase over time (except
in 2020), suggesting that heterogeneity in diversion elasticities has grown gradually over the
period. The magnitudes are economically meaningful. When the destination economy is at
the maximum rather than the minimum value of CCOR

ij (CGLI
ij ), the increase in FDI is 8.4%

(13.9%) larger after two years and 21.1% (33.1%) larger after six years, following a 1% rise
in the destination’s value of operating.

As a robustness check, I run the same interaction regressions for the pre-shock years.
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Table A2 in Appendix B.3.1 again shows that neither the causal effects of the Trump tariffs
nor its heterogeneity captured by Cij proxies exist are statistically significant in the pre-shock
period.

The two measures used to construct the proxies, CORi and GLIi, capture — from
different perspectives — why some countries more easily attract FDI diversion during the
China–U.S. trade war. They are neither perfect nor the only possible proxies, as the latent
country characteristics ηij and Cij are inherently difficult to measure. Some empirical work
has tried to examine such patterns. For instance, Freund et al. (2024) examine which coun-
tries absorbed U.S. imports diverted from China, finding that large and developing economies
disproportionately replaced China. In Appendix B.3.2, I show that the main results remain
robust when further controlling for destination-economy size (log employment) and GDP per
capita in both the diversion and heterogeneity regressions.

Finally, because the empirical exercises are conducted at the country level due to data
limitations, part of the observed heterogeneity may reflect industry-specific θs. The proxies
may also partly capture differences in industrial composition across economies. As shown in
Appendix B.3.3, economies with higher value-added share in certain industries (e.g., Com-
puter, electronic & optical) respond more strongly to the Trump tariffs and thus display
higher FDI diversion elasticities. Nonetheless, the two proxies capture systematic hetero-
geneity beyond these industry effects, and are significantly positive after controlling for
industry shares. Further research using more detailed sectoral or micro-level data could
refine the measurement of FDI diversion elasticities, complementing the general theoretical
framework and empirical strategy developed in this paper.

3 Calibration & Estimation

I now take the model to the data by calibrating it to the world economy in 2017, which
is treated as the initial equilibrium. The calibration includes thirteen economies plus a
combined rest of the world economy (labeled WorldRest),29 and three sectors: (1) agriculture
and mining, (2) manufacturing, and (3) services.

To calibrate the initial equilibrium, I group the model parameters into three categories.
The first category consists of parameters externally calibrated directly from data, including
Li, ϕs

h, and ts
hi. The second category consists of fundamentals recovered by solving the

model to match country-specific and bilateral observables, including τ s
hi, κs

ij, and zj. The

29The calibrated economies are Australia, Canada, China, Germany and France (combined and labeled
as DeFr), the United Kingdom, India, Japan and Korea (combined and labeled as JpKr), Mexico, Malaysia,
South America, Taiwan, China, the United States, and Vietnam. Countries are combined due to the lack of
consistently measured bilateral FDI data when expanding the number of economies in the calibration.
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third category consists of elasticity parameters governing trade and FDI. Trade elasticities,
ϵs, are calibrated using a standard trade gravity regression with fixed effects. The FDI
elasticities, θ and ρ, are calibrated to match an adjusted version of the regression moments
associated with heterogeneous FDI diversion elasticities (8), as detailed below. The related
“China-alike” parameters ηij are then calibrated to match Cij proxies, given the calibrated
values of θ and ρ.

3.1 External Calibration and Original Steady State Fundamentals

External Calibration. I measure efficiency units of labor, Li, as the product of employ-
ment (emp, measured as the number of persons engaged, in millions) and human capital
(hc, an index of human capital index based on years of schooling and returns to education),
both taken from the Penn World Table (PWT, version 10.01). Sectoral expenditure shares,
ϕs

h, are measured using the 2017 Inter-Country Input-Output (ICIO) Tables (OECD, 2021
edition). I obtain PPP-adjusted total expenditures for each economy from PWT. Together
with nominal expenditures from ICIO, these data allow me to infer the price index, Pi, for
each economy. I use most-favored-nation (MFN) tariffs from the Global Tariff Database
(GTD) to construct sector-level tariffs.30 I aggregate GTD sector-level bilateral tariffs to the
three sectors using 2017 BACI trade flows as weights, yielding trade-weighted average tariffs
for each economy pair and sector.

Recovery of Original Steady-State Fundamentals. Table 4 summarizes the calibrated
parameters and the targeted moments in the data.

Conditional on the elasticities to be estimated later, I recover {zj}N
j=1, {τ s

hi}
N,N,S
h=1,i=1,h̸=i,s,

and
{
κs

ij

}N,N,S

i=1,j=1,j ̸=i,s
to exactly match {Xj}N

j=1, {πs
hi}

N,N,S
h=1,i=1,h̸=i,s, and

{
M s

ij

}N,N,S

i=1,j=1,j ̸=i,s
for

the 14 economies and three sectors in 2017.
Bilateral FDI stocks are only available at the country level. To obtain bilateral FDI

stocks at the sector level, I use fDi Markets to calculate sectoral investment shares for each
country pair in 2017.31 Specifically, let N s

ij denote the cumulative number of projects invested

30Feodora Teti’s Global Tariff Database is available at https://feodorateti.github.io/data.html.
31fDi Markets is a project-level database maintained by the Financial Times that tracks cross-border

greenfield investments globally since 2003. The database records the industry classification of each project,
which I use to construct FDI measures at a granular industry level and then aggregate to the three-sector
level. Coverage is based on reports from news and business agencies, so quality and completeness may
vary across countries. In addition, investments through mergers and acquisitions are not included. For my
analysis, I extract all available FDI projects for the selected countries (as source or host), map them to
sectors, and aggregate to the source–destination–sector–year level to construct bilateral FDI investment
shares.
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Table 4: Calibrated Model Parameters and Data Targets

Parameters Moments

Notation Value Description Description

log(zj) 0.81 (0.16) Fréchet scale parameter Economy total expenditures Xj

τs
hi

3.32 (3.04)
2.94 (2.32)
5.77 (5.00)

Trade cost Trade shares (BACI)

κs
ij

1.54 (1.02)
1.58 (1.16)
1.93 (1.62)

Foreign operation costs FDI shares (Official FDI and fDi Markets)

ϵs 7.61, 6.27, 5.42 Trade elasticities Trade gravity equation

θ 4.64 Fréchet dispersion parameter β in adjusted regression (8) in Section 3.3

ρ 0.78 Fréchet correlation parameter γ in adjusted regression (8) in Section 3.3

log
(
ηs

ij

) 2.29 (3.16)
1.03 (2.92)
2.19 (3.07)

China-alike scale parameter Cij Proxy

Notes: All data moments are based on year 2017. For sector-specific parameters, values are ordered as
follows: (1) agriculture and mining, (2) manufacturing, and (3) services. Parameter values for log(zj), τs

hi,
and κs

ij refer to averages across country pairs for each sector s. The values for log(zj) are expressed relative
to those for the U.S. Standard deviations are in parentheses. The value of θ is the median estimate from
regression (8) for 2023, with the Cij proxy adjusted as detailed in the main text. The value of ρ is the
calculated from the same regression estimates.

by firms from j in i in sector s in 2017. Sector-level bilateral FDI stocks from j in i are then
constructed as Ns

ij∑
s′ Ns′

ij

FDKij.
Trade shares, πs

hi, are taken from ICIO after aggregating economies and sectors to
match calibration level. Bilateral capital stocks are taken from the official bilateral FDI
data described in the empirical section for 2017, while domestic capital stocks are taken from
the IMF Investment and Capital Stock Dataset (2021 version). Using these two datasets, I
compute capital shares across destination countries for each source country.

Since capital is not explicitly modeled, I instead target aggregate profit shares. Specifi-
cally, I calibrate

{
κs

ij

}N,N,S

i=1,j=1,j ̸=i,s
so that M s

ij in the model matches FDKs
ij∑

i′ FDKs
i′j

in the data for
all j and s.

Finally, productivity zj affects total expenditure and income conditional on other en-
dogenous variables, including price indices, as well as fundamentals such as trade costs.
Following the identification logic of Waugh (2010), price indices, trade costs, and productiv-
ity cannot be separately identified when none are directly observed. Since I observe price
indices only at the country level, I normalize productivities to be equal across sectors within
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each country.

3.2 Trade Elasticities ϵs

I estimate trade elasticities using a standard gravity regression with fixed effects, ex-
ploiting tariff changes as cost shifters. This approach, however, cannot be applied to the
service sector, since most service transactions (e.g., tourism and legal services) do not face
tariffs at the border. To circumvent this issue, I follow the literature by using the real ex-
change rate (RER) as a cost shifter for the service sector. Appendix B.4 provides further
details on the data, estimation, and reconciliation across different cost shifters. For the
quantitative analysis, I use regression estimates ϵ1 = 7.61, ϵ2 = 6.27, ϵ3 = 5.42 for agriculture
and mining, manufacturing, and services, respectively.

3.3 FDI Elasticities θ, ρ & ηs
ij

For the final set of parameters governing heterogeneous FDI elasticities, there are no
conventional estimation methods in the existing literature.32 I therefore rely on an indirect
inference approach for calibration, building on the empirical estimates in Section 2.

The estimates in Table 3 are informative but cannot be used directly to calibrate θ and
ρ, because the proxies are plausibly positively correlated with the theoretical Cij while the
functional form of this mapping is unknown.

To obtain estimates of the structural parameters θ and ρ for quantitative analysis, I
impose the following functional form assumptions. First, I construct an “average” measure
of how good a location is as a China-like technology destination and the corresponding
average bilateral proxy, defined as C̃ij = ((CORi + GLIi)/2) CORj. Next, I assume that

Cij(a, b) = max


(
C̃ij

)a
− b

1 − b
, 0

 ,

where a and b are parameters of this functional form to be determined. A larger value of
a makes the mapping from the empirical C̃ij to the theoretical Cij more convex. A larger
value of b makes small values of empirical C̃ij less relevant, while the denominator 1 − b

adjusts to keep the largest value of Cij equal to one. The regressions in the empirical section
correspond to the special case a = 1 and b = 0.

I search over grids with a ∈ [0.5, 5] and b ∈ [0, 0.5], using a grid size of 0.1 for a

32A key challenge is the lack of well-measured cost shifters for FDI (e.g., shifters for κs
ij) analogous to

tariffs in trade.
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and 0.01 for b. For each combination of a and b, I use the implied Cij(a, b) to construct
the interaction term, run regression (8), and obtain the estimated coefficients β(a, b) and
γ(a, b). I then compute the corresponding structural parameters as θ(a, b) = β(a, b) and
ρ(a, b) = γ(a,b)/β(a,b)

1+γ(a,b)/β(a,b) . I retain only those regressions in which both β(a, b) and γ(a, b) have
t−statistics exceeding 2.576 (the 1% significance cutoff) and the Kleibergen–Paap F -statistic
exceeds 20.

Figure 1 plots the histograms for θ and ρ for the 2019 and 2023 estimates across different
values of a and b. Larger values of a and b lead to larger estimates of θ and smaller estimates
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Figure 1: θ, ρ Estimates Histogram

Notes: The histogram sample includes 597 estimates for 2019 and 1498 estimates for 2023 that satisfy all
requirements on t−statistics and F−statistics.

of ρ. In the quantitative analysis, I use the median value of the 2023 estimates, θ = 4.64
and ρ = 0.78.33

With Cij(a, b), θ(a, b), and ρ(a, b), I calibrate ηs
ij so that the equilibrium model-implied

share, Cij ≡ ηijZρ
ij

1+ηijZρ
ij

, aligns with the empirical proxy Cij(a, b).

4 Quantitative Implications of the Trump Tariffs

I now use the calibrated model to evaluate the quantitative implications of the 2018–
2019 Trump tariffs. I implement tariff increases at the sector level (three sectors) on Chinese

33The values a = 4.1 and b = 0.1, which lead to the median estimate of θ, imply ρ = 0.7805, which is
very close to the median ρ estimate of 0.7781.
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exports to the United States. Aggregating product-level tariff changes using 2017 Chinese
export values to the U.S. as weights (HS 6-digit level), the implied sectoral tariff increases
are 16.3% for agriculture and mining and 19.7% for manufacturing.

The results show that the welfare implications — measured by real consumption re-
sponses — change substantially once FDI diversion is taken into account. I further decom-
pose welfare changes to highlight the underlying mechanisms, with particular attention to
the relocation effect emphasized in this paper.

I then present results on heterogeneous elasticities of FDI with respect to the value of
operating into each destination. Finally, I conduct counterfactuals that vary the “China-
alike” measure for the U.S. relative to its empirically observed value and examine how these
changes affect the FDI diversion patterns and welfare implications of the Trump tariffs.

4.1 The Importance of FDI Diversion

The left panel of Figure 2 shows aggregate real consumption responses for each econ-
omy under the baseline model and the Fixed FDI model. The Fixed FDI model uses the
same calibration parameters, fundamentals, and initial equilibrium, but producers are held
fixed in their original locations after the tariff shocks. In the baseline model (blue bars),
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Figure 2: Real Consumption Responses

Notes: The response refers to the percentage change in real consumption for each country following the
Trump tariffs on China. The right panel shows the aggregate welfare decomposition for China and the U.S.
according to equation (3), based on the Baseline counterfactual with FDI diversion. The precision error of
this first-order decomposition averages -7.58% across all economies.
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China suffers the largest real consumption loss, at around 0.13%, while the U.S. loses about
0.04%. Economies for which the U.S. is a major export market — such as Canada, Mexico,
and Vietnam — benefit significantly from the Trump tariffs. By contrast, economies more
dependent on China than on the U.S. for export revenues — such as Taiwan, China —
experience welfare losses.

FDI diversion plays a central role in shaping these welfare outcomes. Absent FDI
diversion, the welfare implications of the Trump tariffs differ substantially across economies.
Comparing the baseline model with the Fixed FDI model, in which producers are held fixed
in their original locations but otherwise continue to optimize pricing and production, reveals
three key patterns.

First, eliminating FDI diversion substantially alleviates China’s welfare losses from the
Trump tariffs by about 28% and amplifies the welfare loss for the U.S. by more than 50%.

The right panel plots the decomposition for China and the U.S., showing that the
relocation effect — zero in the Fixed FDI model — is the most significant mechanism driving
these results. The relocation effect outweighs the traditional terms-of-trade effect emphasized
in the existing literature. China’s welfare loss is mainly driven by the relocation effect, as
some varieties become more costly when they must be produced abroad and re-imported.
The relocation effect, as discussed in the model section, reflects changes in price indices
due to shifts in producer locations, excluding direct tariff and wage effects that also exist
in trade-only models or models with fixed FDI. Thus, it points to a countervailing force
affecting price levels in the economy that imposes tariffs on others.

Second, Mexico and Vietnam — the two largest beneficiaries of the Trump tariffs —
experience divergent outcomes due to the presence of FDI diversion. Mexico’s gains are
larger in the baseline model, while Vietnam’s are smaller. This difference arises from general
equilibrium effects: FDI diversion reduces Chinese income and expenditure, which adversely
affects economies like Vietnam that rely heavily on Chinese demand. By contrast, Mexico’s
export revenues depend much more on the U.S. than on China, so increased U.S. expenditure
in the baseline model amplifies Mexico’s benefits.

Third, for most economies, the positive trade diversion effects of the Trump tariffs are
dampened once FDI diversion is taken into account. This is because FDI diversion draws
more investment into the U.S., raising domestic production and thereby limiting export
opportunities for other countries.
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4.2 FDI Diversion Patterns: Heterogeneous Elasticities

The left panel of Figure 3 shows how changes in Chinese outward FDI to different
destination economies correlate with changes in the value of operating in those economies.
The tariff shock reduces the value of operating for all economies, with the U.S., Mexico, and
Canada benefiting the most in relative terms. Indeed, changes in their value of operating
are the largest among all calibrated economies. However, the increase in FDI for these three
economies is not the largest among all economies. Instead, Vietnam emerges as a significant
destination for Chinese FDI relocation, even though its changes in the value of operating do
not stand out relative to others. Similarly, Malaysia; Japan and Korea; and Taiwan, China
also shows sizable FDI growth given their changes in the value of operating. The dotted line
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Figure 3: FDI Elasticities

Notes: The figure plots results for the manufacturing sector. The response corresponds to the percentage
change in Chinese outward FDI to each destination country (Di,CHN ) in the left panel and the percentage
change in each country’s total inward FDI (

∑
j ̸=i Di,j) in the right panel, both in response to the Trump

tariffs on China. The x-axis reports the percentage change in vij for each destination i. The dotted line
links CHN and VNM.

links China and Vietnam on the plot; all other economies lie below it, indicating that, for all
these economies, the elasticity of China’s FDI investment with respect to relative changes in
value of operating is smaller than that for Vietnam. This heterogeneity is built in through
the calibrated “China-alike” shares Cij, with Vietnam and Taiwan, China having the highest
values and thus the largest elasticities.

The right panel of Figure 3 shows changes in aggregate inward FDI across destination
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economies. The FDI elasticity heterogeneity exhibits the same qualitative pattern but to a
smaller extent.

On the other hand, Figure 4 plots how changes in the total exports of the exposed
manufacturing sector (net of tariffs and including domestic trade) relate to changes in the
value of operating. The dotted line is the 45-degree line. The correlation is clearer and
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Figure 4: Export Elasticities

Notes: The figure plots results for the manufacturing sector. The response corresponds to the percentage
change in total exports by each country in response to the Trump tariffs on China. The x-axis reports the
percentage change in the value of operating, vij , for each destination i. The dotted line is the 45-degree line.

the elasticities are essentially homogeneous, reflecting the fact that the value of operating
captures market access as both a production and export location for each destination.34

4.3 Varying How China-alike the U.S. Is

A key motivation for the Trump tariffs is the possibility that the U.S. could induce FDI
diversion and thereby benefit. Throughout the paper, I argue that the magnitude of such
diversion depends on bilateral country characteristics, with the China-alike measure serving

34Total exports net of tariffs are
∑

h Xs
hi =

((
ϵs

ϵs−1

)−ϵs ∑
h Qs

h (P s
h)ϵs−1 (τs

hi)
1−ϵs

(ts
hi)

−ϵs
)(∑

j Ms
ij z̃s

j κs
ijwi

)
.

The first term is exactly the value of operating. Economies above the 45-degree line exhibit positive devi-
ations due to the second term in the export expression, which captures changes in FDI inflows and wage
levels.
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as a proxy in this context. A natural question is how much the level of U.S. “China-alikeness”
matters for the counterfactual results.

Figure 5 plots aggregate welfare changes and their decompositions for three different
cases. Each case corresponds to different set of U.S. ηs

ij values. The “Baseline” uses ηs
ij

calibrated to match the proxy Cij in the data. In the “Small η” (“Large η”) case, I set ηs
US,j

to the smallest (largest) value across all destinations for each j and sector.
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Figure 5: Welfare with Varying US CA Share

Notes: The response refers to the percentage change in real consumption for China and the U.S. following
the Trump tariffs on China. The right panel shows the aggregate welfare decomposition for China and the
U.S. according to equation (3).

When the U.S. becomes much more China-alike (“Large η” case), China’s welfare losses
are further amplified by about 22%, while U.S. welfare losses are mitigated by about 30%.
The decomposition shows that the main driver of these differences is once again the relocation
effect. Figure 6 shows that Chinese and global FDI investment into the U.S. becomes more
elastic than into any other destination, almost doubling FDI diversion toward the U.S.
relative to the baseline in Figure 3. Chinese FDI diversion to Vietnam, Malaysia, Japan,
Korea, and Taiwan, China falls by more than half relative to the baseline, and aggregate FDI
diversion to these economies becomes almost zero. By contrast, decreasing how China-alike
the U.S. is (“Small η” case) does not change the results much, since the U.S. is already
among the least China-alike economies according to my proxy measures.
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Figure 6: FDI Elasticities under “Large US η” Counterfactuals

Notes: The figure plots results for the manufacturing sector. The response corresponds to the percentage
change in Chinese outward FDI to each destination country (Di,CHN ) in the left panel and the percentage
change in each country’s total inward FDI (

∑
j ̸=i Di,j) in the right panel, both in response to the Trump

tariffs on China. The x-axis reports the percentage change in vij for each destination i. The dotted line
links CHN and VNM.

5 Conclusion

This paper underscores the importance of accounting for FDI diversion — both its
magnitude and its systematic heterogeneity — when examining the effects of trade policies
on welfare and global economic outcomes. The recent China–U.S. trade war provides a
relevant and timely case study in today’s highly interconnected global economy.

Whereas much of the existing literature documents FDI relocation patterns and their
potential drivers in a largely descriptive manner, this paper offers a systematic, generalizable,
and theory-consistent framework to test and quantify FDI diversion in response to trade
policies shocks, such as the China–U.S. trade war. The analysis sheds light on why certain
economies, such as Vietnam, have emerged as major destinations for diverted FDI, and on
the extent to which U.S. reshoring efforts are likely to succeed.

The proxies used to test the hypothesis and gauge why some economies attract FDI with
larger elasticities than others during the China–U.S. trade war are admittedly imperfect,
and the mechanisms they capture are not the only possible explanations in this context or
more broadly. Nevertheless, the framework and empirical approach developed here provide
a flexible platform for studying alternative mechanisms driving FDI diversion, and can be
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extended to more detailed modeling of specific channels as richer sectoral or micro-level data
become available.

A Model Appendix

A.1 Model Derivation

I suppress the sector superscript when it is not essential.

Pricing. The producer solves the following pricing and production problem conditional on
the production location i:

max
∑

h

phij(a)qhij(a)
thi

− wilij(a),

s.t. qij(a) = a
1

ϵ−1

κij

lij(a) =
N∑

h=1
τhiqhij(a),

qhij(a) =
(

phij(a)

Ph

)−ϵ

Qh.

Thus, the optimal pricing and production decisions satisfy

phij(a) = ϵ

ϵ − 1
thiτhiwi

a
1

ϵ−1 /κij

dij(a) = 1
ϵ − 1

Ai (wiκij)1−ϵ

︸ ︷︷ ︸
≡vij

a

lij(a) = qij(a)/a
1

ϵ−1

κij

= w−ϵ
i Ai

a

κ−ϵ−1
ij

,

where Ai ≡
∑

h

(τhi)−ϵ (thi)1−ϵ
(

ϵ

ϵ − 1

)−ϵ

P ϵ
hQh.

Location Choice. Since {aij} follows a multivariate max-stable Fréchet distribution with
scale parameter zj, shape parameter θ, correlation function G, correlation parameter ρ, and
weights {ηij}, the transformed variables {dij = vijaij} also follow a multivariate max-stable
Fréchet distribution, with weights {ηijv

θ
ij}. Hence, conditional on location i being chosen,

the distributions of dij and aij are given by

P
(

dij(aij) ≤ d | dij(aij) = max
i′

di′j(ai′j)
)

= P
(

max
i′

di′j(ai′j) ≤ d
)

= exp
(
−zjG

(
vθ

1j, . . . , vθ
Nj

)
d−θ

)
,
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P
(

aij ≤ a | dij(aij) = max
i′

di′j(ai′j)
)

= exp

−zj

G
(
vθ

1j, . . . , vθ
Nj

)
vθ

ij

a−θ

 ≡ Gij(a).

Aggregate Variables. I now derive the aggregate variables. The sector-level price index
is given by

P s
h =

 N∑
j=1

N∑
i=1

∫
Ms

ij

ps
hij(ω)1−ϵs dω

 1
1−ϵs

=

∑
j

∑
i

M s
ij

∫ ∞

0
ps

hij(a)1−ϵs dGs
ij(a)

 1
1−ϵs

.

Similarly, aggregate profits are given by

Ds
ij =

∫
Ms

ij

ds
ij(ω) dω = M s

ij

∫ ∞

0
ds

ij(a) dGs
ij(a) ,

and the trade share is given by

πs
hi = Xs

hi

Xs
h

=
∑

j

∫
Ms

ij
ps

hij(ω)qs
hij(ω) dω

P s
hQs

h

=
∑

j M s
ij

∫
ps

hij(a)qs
hij(a) dGs

ij(a)
P s

hQs
h

.

Substituting M s
ij, ps

hij(a), ds
ij(a), qs

hij(a), and Gs
ij(a) yields the price indices, aggregate profits,

and trade shares reported in the main text.

FDI Technology Class Shares. The location choice probability — which also corre-
sponds to the FDI share for producers from j — is

M s
ij =

vθ
ijGi(vθ

1j, . . . , vθ
Nj)

G(vθ
1j, . . . , vθ

Nj)
.

Substituting the correlation function, the FDI share can be decomposed as follows:

M s
ij =

vθ
ij + ηij

 (ηijvθ
ij)

1
1−ρ∑

i′

(
ηi′jvθ

i′j

) 1
1−ρ


ρ

vθ
ij

∑
i′ vθ

i′j +
(∑

i′

(
ηi′jvθ

i′j

) 1
1−ρ

)1−ρ

=
∑

k=1,2
M sk

ij =
vθ

ij∑
i′ vθ

i′j︸ ︷︷ ︸
≡MsW 1

ij

∑
i′ vθ

i′j∑
i′ vθ

i′j +
(∑

i′

(
ηi′jvθ

i′j

) 1
1−ρ

)1−ρ

︸ ︷︷ ︸
≡MsB1

j
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+

ηij

 (ηijvθ
ij)

1
1−ρ∑

i′

(
ηi′jvθ

i′j

) 1
1−ρ


ρ

vθ
ij

(∑
i′

(
ηi′jvθ

i′j

) 1
1−ρ

)1−ρ

︸ ︷︷ ︸
≡MsW 2

ij

(∑
i′

(
ηi′jv

θ
i′j

) 1
1−ρ

)1−ρ

∑
i′ vθ

i′j +
(∑

i′

(
ηi′jvθ

i′j

) 1
1−ρ

)1−ρ

︸ ︷︷ ︸
≡MsB2

j

,

Here, M sW 1
ij and M sW 2

ij denote the within-class shares for the technology class without cor-
relation (k = 1 or “location-specific”) and with correlation ρ (k = 2 or “China-alike”),
respectively. Similarly, M sB1

j and M sB2
j denote the between-class shares. Note that the

following relationship holds:

M s2
ij

M s
ij

=
ηijZ

ρ
ij

Gij

.

Therefore, ηijZρ
ij

Gij
measures the share of FDI in location i that operates using the technology

class with positive correlation, the “China-alike” technologies.

A.2 Welfare Decomposition

Aggregate expenditure, inclusive of tariff payments, is

Xj = wjLj + Dj + Tj − Γj

= wjLj +
∑

i

∑
s

Ds
ij +

∑
i

∑
s

(
ts
ji − 1

)
T s

ji − Γj.

The aggregate price index is

P s
h =

 N∑
j=1

N∑
i=1

M̃ s
ij z̃j

(
P s

hij

)1−ϵs

 1
1−ϵs

.

Substituting P s
hij and assuming that the only shocks are the tariff changes, the log deviations

of aggregate expenditure and the price index are

d ln Xj = wjLj

Xj

d ln wj +
∑

i

∑
s

Ds
ij

Xj

d ln Ds
ij +

∑
i

∑
s

(
ts
ji − 1

)
T s

ji

Xj

(
d ln ts

ji + d ln T s
ji

)
− Γj

Xj

d ln Γj ,

d ln Pj =
∑

i

∑
s

ts
jiT s

ji

Xj

d ln wi +

(
ts
ji − 1

)
T s

ji

Xj

d ln ts
ji + 1

1 − ϵs

ts
jiT s

ji

Xj

∑
j′

ωij′ d ln M̃ s
ij′

 .
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Reorganizing these two log deviations yields the welfare decomposition in equation (3):

d ln Cj ≈ wjLj

Xj

d ln wj +
∑

i

∑
s

Ds
ij

Xj

d ln wi −
∑

i

∑
s

T s
ji

Xj

d ln wi

+
∑

i

∑
s

Ds
ij

Xj

(
d ln Ds

ij − d ln wi

)
+
∑

i

∑
s

1
ϵs − 1

ts
jiT s

ji

Xj

∑
j′

ωs
ij′ d ln M̃ s

ij′

+
∑

i

∑
s

(
ts
ji − 1

)
T s

ji

Xj

(
d ln T s

ji − d ln wi

)
− Γj

Xj

d ln Γj ,

where T s
ji ≡ πs

ji

ts
ji

Xs
j denotes the factual trade value exported from i to j in sector s, and

ωs
ij′ ≡

Ds
ij′∑

j
Ds

ij
is the share of FDI stocks in i and sector s by producers from j′.

A.3 Microfoundations for Productivity Draw Distribution

A.3.1 China-alike Production

The microfoundation adapts Lind and Ramondo (2023a, 2024) to the context of FDI
studied in this paper. For each producer, and thus each variety ω from j, there exists an
infinite but countable set of production ideas indexed by n = 1, 2, . . .. Each idea has a quality
Rn, a most suitable environment (location) in, and belongs to a production technology class
k. I assume that, in the context of the Trump tariffs, there are two types of technology
class. The first is “location-specific” (LS) technology, and the second is “China-alike” (CA)
technology. A CA idea naturally has in = CN and can be interpreted, for example, as
a production method relying heavily on cheap, disciplined labor and good infrastructure.
The LS technology class aggregates all “non-China-alike” technologies, and in denotes the
location whose specific environment is most suitable for implementing that idea.

Formally, ideas are discovered according to a Poisson process with intensity θr−θ−1Λk
ij dr.

Thus, the expected number of production ideas of technology class k for this variety in i

with quality above r is r−θΛk
ij.

To be implemented in actual production, an idea must be combined with local appli-
cations. For CA technologies, an idea can be applied in all possible production locations.
When a location’s production environment is more similar to China — that is, more China-
alike — such ideas are more likely to achieve high application efficiency there. Formally,
given idea quality Rn and kn = CA, the set {Znm, ℓnm} consists of the points of a Poisson
process with intensity Γ (1 − θ/σ)−σ/θ σz−σ−1T CA

ℓ dz, where T CA
ℓ > 0.
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If the firm applies CA applications for a CA idea n in location ℓnm, it uses the best
available application:

ZCA∗
nℓ ≡ max

m=1,2,...
Znm1{ℓnm = ℓ}.

Since applications are independent of idea quality, the distribution of ZCA∗
nℓ across application

locations for CA ideas, denoted by MCA
CN (z1, . . . , zN), is also independent of quality. This

distribution is given by:

MCA
CN (z1, . . . , zN) = exp

[
−Γ (ρ)− 1

1−ρ

N∑
ℓ=1

T CA
ℓ z

− θ
1−ρ

ℓ

]
.

To derive this,

P
[
ZCA∗

n1 ≤ z1, . . . , ZCA∗
nN ≤ zN |Rn = r, in = CN

]
= P

[
max

m=1,2,...
Znm1ℓnm = ℓ ≤ zℓ, ∀ℓ = 1, . . . , N | Rn = r, in = CN

]
= P [Znm1ℓnm = ℓ ≤ zℓ, ∀ℓ = 1, . . . , N, ∀m | Rn = r, in = CN ]

= P [Znm ≤ zℓnm , ∀m | Rn = r, in = CN ] = P [Znm > zℓnm , for no m | Rn = r, in = CN ]

= exp
[
−

N∑
ℓ=1

∫ ∞

zℓ

Γ (1 − θ/σ)−σ/θ T CA
ℓ σz−σ−1 dz

]
.

The last line follows from the void probability, since {Znm, ℓnm}, conditional on Rn = r, in =
CN , forms a Poisson process with intensity Γ (1 − θ/σ)−σ/θ σz−σ−1T CS

i dz.
For LS technologies, only applications at the most suitable location in are available.

Denote the location of the m-th application of an LS idea n by ℓnm, with efficiency Znm.35

Formally, conditional on idea quality Rn and location in, {Znm, ℓnm} consists of the points
of a Poisson process with intensity Γ (1 − θ/σ)−σ/θ σz−σ−1T LS

ℓ 1{in = ℓnm} dz, where σ >

θ, T LS
ℓ > 0.
If the firm uses LS applications for idea n in location in = ℓnm, it adopts the best

available application:

ZLS∗
nℓ ≡ max

m=1,2,...
Znm1{ℓnm = ℓ}.

Since applications are independent of idea quality and LS applications exist only for the
same production location, the distribution of ZLS∗

nℓ , denoted by MLS
i (zi), is independent of

35An alternative interpretation is that the application efficiency is extremely low when kn = LS and
ℓnm ̸= in.
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idea quality and location-specific:

MLS
i (zi) = exp

[
−Γ (ρ)− 1

1−ρ T LS
i z− θ

1−ρ

]
,

where ρ ≡ 1 − θ/σ, and the derivation is similar to the one for MCA
CN .

Finally, the productivity a firm uses in production at location i is

Ai ≡ max
n=1,2,...

k=LS, CA

RnZk∗
ni .

The implied productivity distribution across locations is given by

F (a1, . . . , aN) = P [A1 ≤ a1, . . . , AN ≤ aN ] = P

 max
n=1,2,...

k=LS,CS

RnZk∗
ni ≤ ai, i = 1, . . . , N


= P

[
RnZk∗

ni a−1
i ≤ 1, ∀i = 1, . . . , N, ∀n, ∀k

]
= P

Rn max
i=1,...,N
k=LS,CS

Zk∗
ni a−1

i ≤ 1, ∀n


= P

Rn max
i=1,...,N
k=LS,CS

Zk∗
ni a−1

i > 1, for no n

 .

Since {Rn, in} follows a Poisson process with intensity θr−θ−1Λk
ij dr, and

{
Zk∗

ni

}
i=1,...,N

is
a random vector with distribution Mk

i (z1, . . . , zN) conditional on Rn = r, in = i, k, the
marking theorem for Poisson processes implies that

{
Rn, in,

{
Zk∗

ni

}
i=1,...,N

}
n=1,2,...

forms a

Poisson process with intensity dMk
i (z1, . . . , zN) θr−θ−1Λk

ij dr. Thus, the corresponding void
probability is

. . . = exp

−
∑

i=1,...,N
k=LS,CA

∫ ∞

0

∫
RN

+

1{r max
i′

zi′a−1
i′ > 1} dMk

i (z1, . . . , zN) θr−θ−1 dr Λk
ij



= exp

−
∑

i=1,...,N
k=LS,CA

∫
RN

+

∫ ∞

(maxi′ zi′ a
−1
i′ )−1 θr−θ−1 dr dMk

i (z1, . . . , zN) Λk
ij

 .

The inner integral with respect to r evaluates to

max
i′=1,...,N

zθ
i′a−θ

i′ .
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Since
{
ZLS∗

ni

}
follows a Fréchet distribution, the second integral for k = LS is

∫
RN

+

max
i′=1,...,N

zθ
i′a−θ

i′ dMLS
i (zi) = E

[
max

i′=1,...,N

(
ZLS∗

ni′

)θ
a−θ

i′ | Rn = r, in = i, k = LS
]

=
[(

Γ(ρ)− 1
1−ρ T LS

i

) (
a−θ

i

) 1
1−ρ

]1−ρ

Γ(ρ) =
(
T LS

i

)1−ρ
a−θ

i .

Since
{
ZCA∗

ni

}
follows a Fréchet distribution and is independent across i, the second integral

for k = CA is
∫
RN

+

max
i′=1,...,N

zθ
i′a−θ

i′ dMCA
i (z1, . . . , zN) = E

[
max

i′=1,...,N

(
ZCA∗

ni′

)θ
a−θ

i′ | Rn = r, in = CA, k = CA
]

=
[
Γ(ρ)− 1

1−ρ

∑
i

T CA
i

(
a−θ

i

) 1
1−ρ

]1−ρ

Γ(ρ) =
[

N∑
i=1

T CA
i a

− θ
1−ρ

i

]1−ρ

.

To impose discipline on the parameters, I assume ΛLS
ij = zj and ΛCA

ij = zjΛCA
j , so that

ΛCA
j reflects the relative productivity of CA technologies relative to LS technologies for firms

from j. I also normalize LS application efficiencies by setting T LS
i = 1 for all i. Under these

assumptions, the joint productivity distribution across locations is

Fj (a1, . . . , aN) = exp

−zj


∑

i

a−θ
i +

∑
i

ΛCA
j

(
T CA

i

)1−ρ

︸ ︷︷ ︸
≡ηij

a−θ
i


1

1−ρ


1−ρ

 .

Replacing ΛCA
j

(
T CA

i

)1−ρ
with ηij yields the reduced-form productivity distribution reported

in the main text.

A.3.2 Alternative Microfoundation: Production with Chinese Key Suppliers

I offer an alternative microfoundation that builds on the role of intermediate inputs in
multinational production — such as headquarter inputs in Ramondo and Rodriguez-Clare
(2013) and sourcing decisions in Antras, Fort and Tintelnot (2017) — which are arguably
important determinants of FDI diversion in the context of the China–U.S. trade war. It
also illustrates how the same productivity distribution can be used to study alternative
mechanisms underlying FDI diversion. Implementing this alternative microfoundation would
require more detailed data, such as data on intermediate input trade, which are outside the
scope of this paper.

Each production idea is paired with a supplier of intermediate inputs. Conditional on
the choice of production location i, the production function for variety ω from j incorporates
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intermediate inputs, relative to the baseline model in the main text:

qij(ω) = z(ω)
1

ϵ−1

κij

(
r̃(ω)

1
ϵ−1 lij(ω)

)1−α
(mij(ω))α ,

where mij(ω) and z(ω) denote, respectively, the quantity and match-specific quality of the
intermediate input, and r̃(ω) is the labor-augmented productivity of the production idea.

Let the price of the intermediate input be pm. The producer solves

max
{phij},lij ,mij

∑
h

phijqhij

thi

− wilij − pmmij.

Under CES demand, the optimal pricing rule yields

phij(r̃, pm, z) = ϵ

ϵ − 1
thiτhiw

1−α
i(

r̃1−α z

(pm)α(ϵ−1)

) 1
ϵ−1

/κij

.

It follows that the producer’s effective productivity is a ≡ r̃1−α︸ ︷︷ ︸
≡r

z

(pm)α(ϵ−1) .

The labor-augmented productivity r̃(ω) is assumed to follow a Fréchet distribution,
independently across production locations, with scale parameter zj and shape parameter θ:

Mj(r̃1, . . . , r̃N) = exp
(

−zj

∑
i

r̃−θ
i

)
.

Hence, the implied joint distribution of ri is

Mj(r1, . . . , rN) = exp
(

−zj

∑
i

r
− θ

1−α

i

)
.

Suppliers of intermediate inputs arrive randomly. Their prices depend on the distribu-
tion of supplier sources, while input quality reflects randomness in the matching process,
similar to Buera and Oberfield (2020). More formally, when a potential supplier arrives,
the supplier’s combined productivity is drawn from the source distribution G(a′), while the
match-specific quality component z is drawn from an exogenous distribution. I assume that
the arrival rate of quality exceeding z, denoted B(z), follows a power law:

B(z) = z−θ.

There are two technology types, distinguished by supplier source. The first is local
suppliers (LS), i.e., firms located in the production country i. The second is Chinese suppliers
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(CS), i.e., varieties produced in China by Chinese firms. Given any supplier productivity a′,
the optimal pricing rule continues to apply, so that

pm(a′) = ϵ

ϵ − 1
thiτhiw

1−α
i

(a′)
1

ϵ−1 /κij

,

⇒ pm(a′)−(ϵ−1)α =
(

ϵ

ϵ − 1
w1−α

i

)−(ϵ−1)α
(a′)α

︸ ︷︷ ︸
≡p̃m

i (a′)

(tii′τii′)−(ϵ−1)α︸ ︷︷ ︸
≡fk

ii′

;

Assume that productivity a′ for suppliers in i′ follows a Fréchet distribution, i.e., a′ ∼
Fréchet

(
T̃i′ , θ

)
, which I verify later. Then, the scaled f.o.b. intermediate input price in i,

denoted p̃m
i (a′), also follows a Fréchet distribution with parameters

(
T̃i

(
ϵ

ϵ−1w1−α
i

)−(ϵ−1)θ
, θ

α

)
.

Given any p̃m
i , the arrival rate of match-specific quality that, in combination with that

price, yields zp̃m
i > x is B (x/p̃m

i ). Integrating over possible prices gives
∫

Bk
i (x/p̃m) dGp̃m,k

i (p̃m),
which is the arrival rate of intermediate-input productivity components exceeding x:

∫
B (x/p) d exp

(
−T̃i

(
ϵ

ϵ − 1
w1−α

i

)−(ϵ−1)θ
p− θ

α

)

= Γ(1 − α)
(

T̃i

(
ϵ

ϵ − 1
w1−α

i

)−(ϵ−1)θ
)α

x−θ ≡ Λix
−θ.

Equivalently, the infinite but countable set of intermediate-input productivity components
{Xn, in}, where in denotes the supplier’s origin, forms a Poisson process with intensity
Λiθx−θ−1 dx.

Finally, the combined productivities across locations follow

F (a1, . . . , aN) = P [A1 ≤ a1, . . . , AN ≤ aN ] = P

 max
n=1,2,...

k=LS,CS

Xnrni′fk
ni′ ≤ ai′ , i′ = 1, . . . , N


= P

[
Xnrni′fk

ni′a−1
i′ ≤ 1, ∀i′ = 1, . . . , N, ∀n, k = LS, CS

]
= P

[
Xn max

i′=1,...,N
rni′fk

ni′a−1
i′ ≤ 1, ∀n, k = LS, CS

]

= P
[
Xn max

i′=1,...,N
rni′fk

ni′a−1
i′ > 1, for no n, k = LS, CS

]
.

Note that {r}i=1,...,N is a random vector whose distribution, conditional on Xk
n = x and in = i,

is Mj(r1, . . . , rN). Similarly,
{
fk

i

}
i=1,...,N

can be viewed as a degenerate random vector that

equals 1 when k = LS, and equals (tii′τii′)−(ϵ−1)α when k = CS. By the marking theorem for
Poisson processes,

{
Xn, in,

{
ri, fk

i

}k=LS,CS

i=1,...,N

}
n=1,2,...

are the points of a Poisson process with
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intensity dMj (r1, . . . , rN) Λiθx−θ−1 dx. Thus, the corresponding void probability is

. . . = exp

−
∑

i=1,...,N
k=LS,CS

∫ ∞

0

∫
RN

+

1x max
i′

ri′fk
i′ a−1

i′ > 1 dMj (r1, . . . , rN) Λiθx−θ−1 dx



= exp

−
∑

i=1,...,N
k=LS,CS

∫
RN

+

∫ ∞

(maxi′ ri′ fk
i′ a

−1
i′ )−1 Λiθx−θ−1 dx dMj (r1, . . . , rN)

 .

For k = LS and location i,
∫
RN

+

max
i′=1,...,N

rθ
i′a−θ

i′ dMj(q1, . . . , qN) =
∫
R+

rθ
i a−θ

i dMj(ri)

= E
[
rθ

i a−θ
i | in = i, k = LS

]
=
[
zj

(
a−θ

i

) 1
1−α

]1−α

Γ(α) = Γ(α)z1−α
j a−θ

i .

For k = CS and i = CN ,
∫
RN

+

max
i′=1,...,N

rθ
i′fCS

i′ a−θ
i′ dMj(r1, . . . , rN)

= E
[

max
i′=1,...,N

rθ
i′fCS

i′ a−θ
i′ | i = CN, k = CS

]
= Γ(α)z1−α

j

∑
i

(
ai

fCS
i

)− θ
1−α

1−α

.

Putting these together:

Fj (a1, . . . , aN) = exp

−Γ(α)z1−α
j

∑
i

Λia
−θ
i +

(∑
i

(
ΛCN

(
fCS

i

)θ
a−θ

i

) 1
1−α

)1−α
 .

It remains to verify the earlier assumption regarding the marginal distribution. Specifically,
this requires that {T̃i, Λi} satisfy the system of joint equations for i = 1, . . . , N :

Γ(α)z1−α
i

(
Λi + ΛCN

(
fCS

i

)θ
)

= T̃i,

Γ(1 − α)
(

T̃i

(
ϵ

ϵ − 1
w1−α

i

)−(ϵ−1)θ
)α

= Λi.

In summary, this alternative microfoundation requires a slight modification of the production
function (and, correspondingly, of trade shares and goods market-clearing conditions), as well
as adjustments to the scale parameters in the correlation function of the productivity draw
distribution. Nevertheless, the same structure applies, leading to a similar reduced-form
specification.
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A.4 Simplifying Model Assumption: One-Location Firms

I assume that each producer is restricted to operating in a single location in the main
text, thereby ruling out the possibility that a variety is produced in multiple locations to serve
different markets. Alternatively, Arkolakis et al. (2018) adopt the opposite assumption: they
replace firm-level fixed operating costs with fixed marketing costs for each export destination,
allowing firms to serve each market independently from potentially different production
locations. In this section, I show that adopting this alternative assumption has only minimal
implications for the results in the main text.

Consider a producer ω from source economy j serving market h. The producer chooses
a production location i from among all possible destinations. The production function is
qhij(a) = a

1
ϵ−1 lhij(a)/κij, and the joint productivity distribution is the same as in the main

text, Fj({ai}). For each destination market h, the producer selects the cheapest production
location from which to serve that market, and sets the corresponding price:

phij = ϵ

ϵ − 1
thiτhiwi

a
1

ϵ−1
ij /κij

⇒ phj = min
i′

phi′j.

The profit from selling to h by producing in i, excluding tariffs, is

dhij(a)
thi

=
(

ϵ

ϵ − 1

)1−ϵ 1
ϵ

(thiτhiκij)1−ϵ w1−ϵ
i P ϵ

hQh
1
thi

a ≡ vhija.

Following similar calculations, the probability that location i is the optimal production site to
serve h is Mhij ≡ vθ

hijGji(vθ
h1j ,...,vθ

hNj)
Gj(vθ

h1j
,...,vθ

hNj)
. The corresponding conditional productivity distribution

is Ghij(a) ≡ exp
(

−zj

(
Gj(vθ

h1j ,...,vθ
hNj)

vθ
hij

)
a−θ

)
. The total revenue of firms from j producing in

i to sell in h is

Dhij = Mhij

∫ ∞

0
vhija dGhij(a) = z̃j

(
Gji

Gj

) θ−1
θ

vθ
hij,

and the total revenue of firms from j producing in i across all markets is Dij = ∑
h Dhij =

z̃j

(
Gji

Gj

) θ−1
θ ∑

h vθ
hij. Define vij ≡

(∑
h vθ

hij

) 1
θ , and substitute for vhij:

vij ≡
(∑

h

vθ
hij

) 1
θ

= 1
ϵ − 1

(wiκij)1−ϵ Ai,

where Ai ≡
(∑

h

[(
ϵ

ϵ−1

)−ϵ
t−ϵ
hi τ 1−ϵ

hi P ϵ
hQh

]θ
) 1

θ

. Thus, the only difference from the framework in
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the main text is the definition of vij and Ai. From a theoretical perspective, this modification
does not materially alter the main results.

Empirically, since the paper relies on aggregate data and focuses on aggregate impli-
cations, the two modeling assumptions are effectively equivalent. When the U.S. imposes
tariff increases on Chinese exports, a producer may choose to relocate only the operations
serving the U.S. market while retaining production for China and other destinations within
China. This implies smaller producer outflows from China conditional on relocation, and a
higher probability of movement for each producer. Without more detailed firm-level data on
relocation decisions, it is not possible to distinguish between these different margins of FDI
diversion. While it would certainly be interesting to study how finite operating fixed costs
alter the elasticity of FDI diversion and its implications, my calibration targets aggregate
FDI diversion elasticity at the country level. Hence, the aggregate implications of my model
should be similar to those of a richer model with multiple FDI diversion margins, mitigating
concerns about this simplification for the questions addressed here.

The main advantage of this simplifying assumption is that it rules out firms’ joint
decision-making across multiple locations, which would otherwise introduce a complex com-
binatorial problem, as in Tintelnot (2017); Morales, Sheu and Zahler (2019); Alfaro-Urena
et al. (2023). Frameworks that incorporate such mechanisms — like Tintelnot (2017) —
speak directly to another important driver of heterogeneous FDI diversion elasticities: prox-
imity to key markets. Mexico provides a salient example. When firms can operate in several
— but costly and therefore limited — production sites, proximity to major markets becomes
a critical determinant of location choice. In this context, tariff shocks that worsen China’s
attractiveness as a production base can induce firms to select only one new location; Mexico
is then likely the preferred alternative and exhibits high FDI diversion elasticities.

A.5 Trade Diversion Index: Model and Empirics

In the empirical analysis, I use country-level aggregate data to construct the trade
diversion index. Accordingly, the corresponding model variables are

∑
s

ωs
ij∂ ln M s

ij,
∑

s

ωs
i′j∂ ln M s

i′j, and
∑

s

ωs
ij∂ ln vs

ij,

where ωs
ij denotes the share of sales (and equivalently the FDI share) of firms from j operating

in i for sector s. Empirically, this share is not available, and I approximate it using ri(ν)
from the empirical trade diversion index when sector s corresponds to product ν.
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Since vs
ij ≡ 1

ϵs−1As
i (wiκ

s
ij)1−ϵs , the market access part of the relevant changes is given by

∑
s

ωs
ij d ln As

i

=
∑

s

ωs
ij

∑
h

(τ s
hi)

−ϵs

(ts
hi)

1−ϵs ( ϵs

ϵs−1

)−ϵs

(P s
h)ϵQs

h∑
h′ (τ s

h′i)
−ϵs (ts

h′i)
1−ϵs

(
ϵs

ϵs−1

)−ϵs

(P s
h′)ϵQs

h′

(−ϵs d ln τ s
hi + (1 − ϵs) d ln ts

hi + d ln(P s
h)ϵQs

h) .

Because the analysis focuses on how changes in U.S. demand affect outcomes, only the case

h = US matters here. The corresponding share is rs
hi ≡ (τs

hi)
−ϵs

(ts
hi)

1−ϵs

( ϵs

ϵs−1)−ϵs

(P s
h)ϵQs

h∑
h′(τs

h′i)
−ϵs

(ts
h′i)

1−ϵs

( ϵs

ϵs−1)−ϵs
(P s

h′ )ϵQs
h′

with h = US. This corresponds to rUS,i(ν) in the empirical trade diversion index.
Thus, the relevant variation becomes

∑
s

ωs
ijr

s
US,i d ln(P s

US)ϵQs
US .

I assume that across sectors s, the relevant elasticity is ϵ̃. Hence, d ln(P s
US)ϵQs

US = (ϵ −
ϵ̃) d ln P s

US + ϵ̃ d ln XUS. The variation in the U.S. sectoral price index arises from tariff
changes across all U.S. source countries:

d ln P s
US =

∑
i′

πs
US,i′ d ln P s

US,i′j .

Since I study U.S. tariffs on China, only the case i′ = CN is relevant. Because firms from
different j face the same change in tariffs on Chinese exports to the U.S., d ln P s

US,CN,j =
d ln ts

US,CN + d ln wCN, assuming that the trade costs and foreign operation frictions remain
unchanged. Putting everything together, the relevant exposure of j’s investment in i to U.S.
tariffs on China is

∑
s

ωs
ijr

s
US,iπ

s
US,CN d ln ts

US,CN ,

which maps directly to the empirical trade diversion index in (5).

B Empirics Appendix

B.1 FDI Data Details

The OECD FDI data are based on statistics provided by 38 OECD member countries.
The data are public and can be accessed here: https://stats.oecd.org/index.aspx?
DataSetCode=FDI_FLOW_PARTNER. The OECD defines FDI as: “FDI statistics cover all
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entities in an FDI relationship. An FDI relationship is established when an investor in one
country acquires 10% or more of the voting power in a business enterprise in another country.
The 10 percent criterion is used to establish that the direct investor has a significant degree
of influence over the operations of the direct investment enterprise.”

A key issue with FDI data for economic analysis is the complex financing structure of
investing firms, including the use of special purpose entities (SPEs) to channel investments.
My objective is to capture the actual production capacity deployed in a host country and
ultimately owned by a source country. In the OECD database, each reporting country
provides different measures of FDI values. The domestic entities related to FDI can be
classified as either SPEs or non-SPEs, and the counterpart country can be measured by
immediate or ultimate sources/destinations. I prioritize using the host country’s reported
inward FDI from non-SPE entities and ultimate source countries whenever available. When
these are not available, I use total (SPEs and non-SPEs) or immediate source country data.
If the host country does not report the information, I use mirror data from partner countries.

The OECD database is limited in terms of country coverage. Coverage is more complete
when at least one country in the pair is an OECD member, and less so when neither is (e.g.,
China and Vietnam).

I use the Coordinated Direct Investment Survey (CDIS) compiled by the International
Monetary Fund (IMF) to complement the OECD database. As with the OECD data, I prior-
itize reporting countries’ inward FDI positions and fill missing information using alternative
sources when necessary.

The reliability of these datasets and thus their priority in my empirical analysis depend
on how effectively they address issues such as complex financing structures. The OECD and
CDIS datasets make concerted efforts to tackle these problems.

B.2 “China-alike” Proxies: Histogram

Figure A1 plots the histograms of the two proxies for Cij in (6).

B.3 Empirical Evidence: Robustness Checks

B.3.1 Pre-shock Regressions

This section reports results from regressions (7) and (8) for pre-shock periods as placebo
robustness checks.

47



0
2

4
6

8
10

D
en
si
ty

0 .2 .4 .6 .8 1
Value

Cij
COR Cij

GLI

Figure A1: Proxy Histogram

Notes: The sample for both proxies includes 3,369 economy pairs, covering 138 destination economies and
73 investing economies.

B.3.2 Control for GDP per capita and Employment

Table A3 repeats the regressions in Tables 2 and 3, adding two controls for the desti-
nation country i: 2017 log GDP per capita and 2017 log employment (number of persons
engaged), both from the Penn World Table (version 10.01). In the baseline (non-interaction)
specifications, ∆EXi is instrumented by DIi, while ln GDPpci and ln Empi are treated as
included instruments. The coefficients on ∆EXi remain consistently positive and significant,
and they increase over longer horizons. The coefficients on ln GDPpci are also consistently
positive and significant, indicating that more advanced economies generally experience faster
inward FDI growth relative to less advanced economies.

In the interaction specifications, all interaction terms with ∆EXi are instrumented by
the corresponding interaction terms with DIi, capturing systematic variation in FDI diver-
sion elasticities. The results remain consistent with the baseline for the two proxies, but
also suggest higher elasticities for richer economies (with higher ln GDPpci) and for larger
economies (with higher ln Empi, especially in later years). Overall, while there are addi-
tional systematic patterns in FDI diversion, the proxies emphasized in the main text remain
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Table A1: Pre-shock: IV Estimates of β̄ by Year

2013 2014 2015 2016

∆EXi -0.263 0.597 2.791 0.580

(2.929) (2.681) (1.877) (1.111)

Kleibergen–Paap F 11.12

# Obs. 3435

Notes: All regressions include investing economy fixed effects.
The sample is restricted to economies with the largest inward
FDI stocks in 2017, excluding those typically classified as tax
havens. The regressions cover 74 investing economies and 138
destination economies. Standard errors are clustered at the
investing economy level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

important.

B.3.3 FDI Diversion Patterns and Industry Composition

To explore how sectoral composition affects heterogeneity in FDI diversion elasticities,
Table A4 extends the interaction regressions in Table A3 by adding ∆EXi × Sector Sharei,
alongside the main interaction terms ∆EXi × CP

ij , for P ∈ {COR, GLI}. Sector shares are
measured as the sector’s value-added share of total economy-wide value-added, as reported
in the OECD ICIO for 2017. All sector shares are normalized to range from zero to one.
Manufacturing (code C) aggregates all manufacturing subsectors. I report results for 2019
and 2023, covering all available ISIC (Rev. 4) two-digit tradable sectors. The interaction
terms ∆EXi×Sector Sharei are instrumented using the corresponding interaction terms with
DIi.

Almost all coefficients on ∆EXi ×CCOR
ij and ∆EXi ×CGLI

ij remain significantly positive,
indicating that no single industry fully accounts for the systematic heterogeneity captured
by the proxies CCOR

ij or CGLI
ij .

A few sectors stand out as particularly important in attracting FDI diversion in re-
sponse to the Trump tariffs: “Chemicals”, “Computer, electronic & optical”, “Machinery &
equipment n.e.c.”, and “Other transport equipment”. In contrast, sectors associated with
lower FDI diversion elasticities include mining and “Food, beverages & tobacco,” which con-
sistently yield negative coefficients. In general, sectors with larger elasticities tend to be
technologically complex manufacturing industries, while sectors highly dependent on geog-
raphy or natural resources exhibit smaller or negative elasticities.
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Table A2: Pre-shock: IV Estimates of β, γ by Year

Panel A. Proxy CCOR
ij

2013 2014 2015 2016

∆EXi -1.847 -0.990 0.157 0.158

(1.131) (0.897) (0.662) (0.503)

∆EXi × CCOR
ij 2.084 2.178 3.901∗ 0.502

(3.872) (3.563) (2.200) (1.432)

Kleibergen–Paap F 20.82

# Obs. 3369

Panel B. Proxy CGLI
ij

2013 2014 2015 2016

∆EXi -0.857 -0.293 1.123∗ 0.440

(0.957) (0.808) (0.612) (0.464)

∆EXi × CGLI
ij 1.076 2.083 4.532 0.136

(6.599) (6.175) (3.940) (2.733)

Kleibergen–Paap F 30.87

# Obs. 3369

Notes: All regressions include investing economy fixed effects.
The sample is restricted to economies with the largest inward
FDI stocks in 2017, excluding those typically classified as tax
havens. The regressions cover 74 investing economies and 138
destination economies. Standard errors are clustered at the
investing economy level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

B.4 Estimation of Trade Elasticities ϵs

Using the trade share expression (2) and the prices P s
hij,

Xs
hi =

(
Xs

h (P s
h)ϵs−1

) ϵs

ϵs − 1
∑

j

M̃ s
ij z̃jκ

s
ijwi

 (τ s
hit

s
hi)

1−ϵs

.

The partial trade elasticities in the model are governed solely by the preference pa-
rameters ϵs. This is because the model assumes no firm entry and that each firm operates
a single production location and exports to all destinations. Consider tariffs between im-
porting countries h and h′ and exporting country i. Changes in thi and th′i jointly affect
firm location decisions for producers from all source countries j. As a result, cross-country
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trade differences arise only along the intensive margin, which is governed solely by the trade
elasticities ϵs.

Although the mapping from empirical estimates to model parameters depends on the
model assumptions, the resulting estimates fall within the range of the trade elasticities
estimated in the literature. For example, estimated elasticities for Agriculture and Mining
are larger than those for Manufacturing, consistent with Caliendo and Parro (2015), who do
not estimate trade elasticities for the service sector.

I begin with BACI trade data from 1995 to 2017 prior to the Trump tariffs, collapsed
to the ISIC (Rev. 3.1) 2-digit level. I merge these data with the most-favored-nation (mfn)
tariffs from the Global Tariff Database and then further collapse them into two broad sectors:
s = 1, agriculture and mining, and s = 2, manufacturing. Tariffs at the broad-sector level
are computed as trade-value-weighted averages of ISIC 2-digit tariffs.

For each of the two sectors, I estimate:

ln EXs
hit = FEs

ht + FEs
it + FEs

hi + (1 − ϵs) ln(1 + mfns
hit) + us

hit,

where the implied coefficient ϵ̂s is used for calibration, and time-invariant trade costs are
absorbed by importer–exporter fixed effects FEs

hi.
This standard tariff-based approach is not applicable to services, since service trade

(e.g., tourism, legal service) generally does not incur tariffs. To address this, I instead
follow the literature and use the real exchange rate (RER) as a cost shifter. For sector 3, I
substitute ln τ s

hit in the regression with ln RERhit. Because the real exchange rate satisfies
RERhit = RERhjtRERjit, importer–time and exporter–time fixed effects would absorb all
variation. I therefore estimate with importer–exporter fixed effects FEs

hi and time fixed
effects FEs

t :

ln EX3
hit = FE3

hi + FEt − ϵ3
RER ln RERhit + u3

hit.

For the service sector, I use total bilateral service trade values from ICIO for the available
countries over 2008–2017. Real exchange rates are calculated using official exchange rates
and PPP from the World Development Indicators (WDI).

It is well known that the trade elasticities estimated from RER shifters are typically
lower than those estimated from tariff shifters. See Burstein and Gopinath (2014) for a
survey. To make the elasticity for the service sector comparable to those for goods, I assume
that the underlying factors causing the discrepancy between RER and tariff pass-throughs
affect all sectors similarly. Consequently, I scale the RER-based estimates for services by the
ratio of tariff-based to RER-based estimates in manufacturing. Specifically, the estimated
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coefficients using tariff shifters are ϵ̂1
tariff = 7.61 and ϵ̂2

tariff = 6.27, while the estimated coeffi-
cients using RER shifters for sectors 2 and 3 are ϵ̂2

RER = 0.076 and ϵ̂3
RER = 0.066. I therefore

infer the service-sector elasticity as ϵ̂3
RER × ϵ̂2

tariff
ϵ̂2

RER
= 5.42. Thus, the calibrated values are

ϵ1 = 7.61, ϵ2 = 6.27, ϵ3 = 5.42.
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